• Title/Summary/Keyword: NiFe alloy

Search Result 446, Processing Time 0.03 seconds

Microstructures of W-Mo-Ni-Fe Heavy Alloys

  • Lin, Kuan-Hong;Hsu, Chen-Siang;Lin, Shun-Tian
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.937-938
    • /
    • 2006
  • Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.

  • PDF

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.

Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line (송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향)

  • Kim, Bong-Seo;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

Relationship Between Texture and Deformability in Fe-Ni Invar Alloy Strips (Fe-Ni 인바(Invar) 합금 박판의 가공성 향상을 위한 방향성 조직 제어)

  • Park, S.Y.;NamGung, J.;Kim, M.C.;Kim, S.S.;Lee, S.S.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.586-590
    • /
    • 2006
  • 42Ni-Fe Invar alloy strips were fabricated using conventional ingot casting and melt drag casting followed by rolling. Mechanical properties such as tensile strength, elongation and blanking deformability of the strips were evaluated. The properties were strongly depended on fabrication methods. Tensile strength and elongation of all strips were in the range of $40-60kg/mm^{2}$ and 26-35%, respectively, which are enough values for the manufacture of the final products. In some of the strips, however, burrs occurred at deformed surface. The properties of strips were explained in terms of microstructure such as grain size and texture formation during rolling. Additionally, strips by melt drag casting method were compared to those by conventional ingot casting.

A Study on the characteristics of microstructure, hardness and wear of rapidly solidified AI-20Si-5Fe-2Ni materials (급냉응고 AI-20Si-5Fe-2Ni 합금의 조직, 경도 및 마모특성에 관한 연구)

  • 이상용;이정환;이영선;신평우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.157-165
    • /
    • 1996
  • Characteristics of microstructure, hardness and wear of two AI-20Si-5Fe-2Ni materials produced by powder metallurgy and spray forming respectively were studied at temperatures up to 560$^{\circ}C$. Above 300$^{\circ}C$, the microstructure of powder processed alloy became inhomogenous, whereas the spray formed alloy showed homogeneous microstructures. Hardness of both alloys was increased between 300$^{\circ}C$~490$^{\circ}C$ in both alloy. It was interpreted that increase in hardness was mainly related to the formation of stable and fine intermetallic phase from metastable one. It was showed that hoogenity of microstructure in the rapidliy soldified affected directly wear property.

  • PDF