• Title/Summary/Keyword: Ni-ions

Search Result 514, Processing Time 0.025 seconds

Electrochemical Corrosion Damage Characteristics of Austenite Stainless Steel and Nickel Alloy with Various Seawater Concentrations (오스테나이트계 스테인리스강과 니켈합금의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.281-288
    • /
    • 2021
  • Due to advancement of the industry, operation of a device in a harsh environment is increasing. Especially, the marine environment contains Cl- ions which causes localized corrosion such as pitting and crevice corrosion of stainless steel and various metals. In this study, electrochemical corrosion behaviors of austenitic stainless steel (STS 316L) and nickel alloy (Inconel 600) with different seawater concentrations (fresh water, seawater, mixed water) were investigated. The STS 316L and Inconel 600 were etched in 10% oxalic acid and composed of an austenitic phase. Results of Tafel analysis in seawater showed that STS 316L and Inconel 600 presented the highest corrosion current densities of 7.75 × 10-4 mA/cm2 and 1.11 × 10-4 mA/cm2 and the most negative pitting potentials of 0.94 V and 1.06 V, respectively. The maximum damage depths and surface damage ratio by pitting corrosion increased with chloride concentration. The STS 316L had higher PREN than Inconel 600. However, the surface damage and weight loss of Inconel 600 were superior to STS 316L. It was difficult to compare the pitting resistance of STS 316L based on Fe and Inconel 600 based on Ni with PREN simply.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

Stability Constants of Nitrogen-Oxygen Donor Macrocyclic Ligand-Metal Ion Complexes in Aqueous Solutions (질소-산소 주개 거대고리 화합물-금속착물의 수용액에서의 안정도상수)

  • Jeong Kim;Chang-Ju Yoon;Hyu-Bum Park;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.119-127
    • /
    • 1991
  • The protonation and the metal ion complexation of 15 to 18 membered diaza crown ether such as 1,12-diaza-3, 4 : 9, 10-dibenzo-5, 8-dioxacyclopentadecane(NtnOenH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-hydroxy-5,9-dioxacyclohexadecane(NtnOtnH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-15-hydroxy-5,9-dioxacyclohexadecane(Ntn(OH)OtnH$_4$), 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdienH$_4$) and 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane(NtnOdienH$_4$) were studlied by potentiometry and NMR spectroscopy. The protonation constants were used to predict basicity of crown ethers. The sequence of the basicity was NenOdienH$_4$ < Ntn(OH)OtnH$_4$ < NtnOenH$_4$ < NtnOtnH$_4$ < NtnOdienH$_4$. Changes on the basicity were explained in terms of the effects of substituents and the degree of twistness of the macrocyclic ring. The sequence of the complex stabilities were Co(II) < Ni(II) < Cu(II) < Zn(II) for the transition metal complexes and Cd(II) < pb(II) < Hg(II) for the post-transition metal complexes. These changes on the stabilities were dependent on the basicity of the ligand and cavity size of the ring. For the heavy post-transiton metal complexes and Zn(Ⅱ) complex, the former factor was predominent and for the other transition metal complexes, the latter was affected on the stabilities. $^1$H and $^{13}$C-NMR studies for heavy post-transition metal complexes indicated that the nitrogen atom has greater affinity on metal ions than oxygen atom and the planarity of the rings was losed by the complexation with metal ions.

  • PDF

Hydrogeochemistry and Contamination of Meteoric Water at the Narim Mine Creek, Korea (나림광산 수계에 분포하는 순환수의 수문지구화학 및 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 1999
  • The Narim gold mine is located approimately 200km southeast of Seoul within the Muju mineralized district of the Sobaegsan gneiss complex, Korea. Environmental geochemistry were undertaken for various kinds of water (surface, ground and mine water) collected of April, September and November in 1998 from the narim mine creek. Hydrogeochemical compositions of water samples are characterized by the relatively significant enrichment of Na+K, alkali ions, $HCO_{3}$, $NO_{3}$, Cl and F in groundwater, wheras the mine and surface waters are relatively enriched in Ca+Mg, hea표 metals and $SO_{4}$. Therefore, the groundwaters belong to the (Na+Ca)-( $HCO_{3}+SO_{4}$) type, respectively. The pH and EC values of the non-mining creek surfers are relatively lower compared with those of the surface water of the mine and ore dump area. The d values ($\delta$D-8$\delta^{18}$O) of all kinds of water from the Narim mine creek are 5.8 to 13.1 The range of $\delta$D and $\delta^{18}$O values (relative to SMOW) are shown in distinct two groups as follows: for the April waters of -64.8 to -67.8$\textperthousand$ and -9.6 to -10.0$\textperthousand$(d value=10.1 to 13.1), and for the November waters of -65.9 to -70.2$\textperthousand$ and -9.3 to -9.6$\textperthousand$ (d value=5.8 to 7.9), respectively. This range variation indicates that two group water were composed of distinct waters with seasonal difference. Geochemical modeling showed that mostly toxic metals (As, Fe, Mn, Ni, Pb, Zn) may exist largery in the from of metal $(M2^+)$ and metal-sulfate $(MSO_4\;^{2-$\mid$),\; and \;SO_4^{2-$\mid$}$ concentration influenced the speciation of heavy metals in the meteoric water. These metals in the groundwater could be formed of $CO_3 \;and \;(OH)_3$ complex ions. Using computer program, saturation index of albite, calcite, dolomite in meteoric water show undersaturated and progreddively evolved toward the saturation state, however, ground and mine water are nearly saturated. The gibbsited water-mineral reaction and stabilities suggest that the weathering of silicate minerals may be stable kaolinite, illite and Nasmectite. The clay minerals will be transformed to more stable kaolinite owing to the contiunous reaction.

  • PDF

Expression and Characterization of Calcium- and Zinc-Tolerant Xylose Isomerase from Anoxybacillus kamchatkensis G10

  • Park, Yeong-Jun;Jung, Byung Kwon;Hong, Sung-Jun;Park, Gun-Seok;Ibal, Jerald Conrad;Pham, Huy Quang;Shin, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.606-612
    • /
    • 2018
  • The enzyme xylose isomerase (E.C. 5.3.1.5, XI) is responsible for the conversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studied the characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, the gene coding for XI (xylA) was inserted into the pET-21a(+) expression vector and the construct was transformed into the Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-${\beta}$-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was $80^{\circ}C$ and measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at $60^{\circ}C$. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase the enzyme activity; manganese was the most effective. Additionally, recombinant XI was resistant to the presence of $Ca^{2+}$ and $Zn^{2+}$ ions. The kinetic properties, $K_m$ and $V_{max}$, were calculated as 81.44 mM and $2.237{\mu}mol/min/mg$, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus, and Thermotoga. These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.

A Geochemical Study on Pyrophyllite Deposits and Andesitic Wall-Rocks in the Milyang Area, Kyeongnam Province (경남 밀양지역 납석광상과 안산암질 모암의 지구화학적 연구)

  • Oh, Dae-Gyun;Chon, Hyo-Taek;Min, Kyoung-Won
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.27-39
    • /
    • 1992
  • Several pyrophyllite deposits occur around the Milyang area where Cretaceous andesitic rocks and spatially related granitic rocks are widely distributed. Pyrophyllite ores consist mainly of pyrophyllite, and quartz with small amount of sericite, pyrite, dumortierite, and diaspore. The andesitic rocks and spatially related granitic rocks in this area suggest that they could be formed from the same series of a calc-alkaline magma series. The contents of $SiO_2$, $Al_2O_3$, LOI(loss on ignition) are enriched, and $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ are depleted in altered andesitic rocks and ores. Enrichment of As, Cr, Sr, V, Sb and depletion of Ba, Cs, Ni, Rb, U, Y, Co, Sc, Zn are characteristic during mineralization. The pyrophyllite ores can be discriminated from the altered-and unaltered wall-rocks by an increasing of $(La/Lu)_{cn}$ from 4.18~22.13 to 8.98~55.05. In R-mode cluster analysis, Yb-Lu-Y, La-Ce-Hf-Th-U-Zr, $TiO_2-V-Al_2O_3$, Sm-Eu, $CaO-Na_2O-MnO$, Cu-Zn-Ag, $K_2O-Rb$ are closely correlated. In the discriminant analysis of multi-element data, $P_2O_5$, As, Cr and $Fe_2O_3$, Sr are helpful to identify the ores from the unaltered-and altered wall-rocks. In the factor analysis, the factors of alteration of andesitic rocks and ore mineralization were extracted. In the change of ions per unit volume, $SiO_2$, $Al^{3+}$ and LOI are enriched and $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ are depleted during the alteration processes. The Milyang and the Sungjin pyrophyllite deposits could be mineralized by hydrothermal alteration in a geochemical condition of low activity ratio of alkaline ions to hydrogen ion with reference to spatially related granitic rocks.

  • PDF

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

Kinetic Studies of Reaction of Transion Metal Ion with Macrocyclic Ligands. Containing Nitrogen and Oxygen Donor Atoms (전이금속 이온과 Macrocyclic Ligand 사이의 반응에 관한 속도론적 연구 질소원자와 산소원자를 포함하는 거대고리 리간드를 중심으로)

  • Kim Jin-Ho;Cho Moon-Hwan;Hyeoun Dong-Ho;Park Hyu-Bum;Kim Si-Joong;Lee Ihn-Chong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.418-423
    • /
    • 1990
  • The protonation constants for the macrocyclic ligands 1,15,18-triaza-3,4;12,13-dibenzo-5,8,11-trioxa cycloeicosane (NdienOdienH$_4$), 1,12,15-triaza-3,4;9,10-dibenzo-5,8-dioxa cycloheptadecane (NdienOenH$_4$), and 1,15-diaza-3,4;12,13-dibenzo-5,8,11-trioxa cycloheptadecane (NenOdienH4) have been determined by the potentiometry in aqueous solutions (25$^{\circ}C$, I = 0.1, KNO$_3$). The stability constants for complexes formed in the aqueous solution (25$^{\circ}C$, I = 0.1, KNO$_3$) between the above ligands and the metal ions (Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)) have been measured by potentiometry. The rate of the ligand substitution reaction was measured spectrophotometrically by the addition of aqueous solutions of ethylenediamine to the solution of the complex. From the study of the temperature effect on the rate constant (k$_{obs}$), activation parameters (E$_a$,${\{Delta}H^{\neq}$, and ${\{Delta}S^{\neq}$) have been determined. The possible mechanism for the substitution reaction is proposed.

  • PDF

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries (리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석)

  • Park, Seohyeon;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

Hydrogen ion-selective membrane electrodes based on arylamines as neutral carriers (아릴아민계의 중성운반체를 이용한 수소이온선택성 막전극)

  • Jeong, Seong-Suk;Cho, Dong-Hoe;Kim, Jae-Woo;Chung, Koo-Chun;Park, Myon-Yong
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 1996
  • Hydrogen ion-selective membrane electrodes based on tribenzylamine(TBA), tetrabenzylethylenediamine(TBEDA), pentabenzyldiethylenetriamine(PBDETA) as neutral carriers were shown good selectivity and linearity in the range of pH 1~pH 9, pH 2~pH 12, pH 4~pH 12. The pH selectivity of this membrane electrodes have nothing relation with the numbers of unshared electron pair in TBA, TBEDA, PBDETA and were shown a slope of 43.8mV/pH, 46.9mV/pH, 43.6mV/pH respectively. The selectivity coefficients were determined by the separate solution method for alkali($Li^+$, $Na^+$, $K^+$), alkaline earth metal($Ba^{2+}$, $Ca^{2+}$, $Mg^{2+}$) and transition metal ions($Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$). The membrane electrode based on TBEDA appeared the best results as hydrogen ion electrode.

  • PDF