• Title/Summary/Keyword: Ni-foil

Search Result 61, Processing Time 0.041 seconds

Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer (Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가)

  • Jin, Yeung Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

The Fabrication and Characteristics of White Emission Using CCM on Flexible Substrate (플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가)

  • Kim, Gi-Ryoung;Ahn, Sung-Il;Kum, Jeong-Hun;Lee, Heung-Ryeol;Yim, Tae-Hong;Lee, Seong-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.411-412
    • /
    • 2007
  • EL (electro luminescent) is generally studied as a large size plane light emitting device and flexible light source because of it's simple manufacturing process. In this experiment, we manufactured flexible white emitting light source using Ni-foil with blue phosphor and color change materials. With increasing the thickness of color change material, the luminance of white emission is increased and the color coordinate of white color was shifted to pure white of (0.317,0.328) by strong emission of color change materials excited by blue excitation spectra. Also the luminance level was 30% higher in white emitting light device than blue only light source.

  • PDF

무전해 Ni도금박막 형성에 DMAB가 미치는영향

  • Kim, Hyeong-Cheol;Kim, Na-Yeong;Baek, Seung-Deok;Na, Sa-Gyun;Lee, Yeon-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.204.1-204.1
    • /
    • 2014
  • 스마트폰과 같은 통신기기 및 각종 전자제품에 있어 크기의 축소와 간소화 추세에 따라 인쇄회로기판(PCB)의 초미세회로설계 기술이 요구됨에 따라, 인쇄회로기판과 첨단 전자부품 사이의 접합 신뢰성을 향상시키기 위해 무전해 니켈 도금이 널리 사용되고 있다. 일반적으로, 무전해 Ni도금은 강산, 강염기성 용액을 이용하여 수행되고 있다. 따라서, 공정과정 중에 기판의 손상을 초래하기도 할뿐만 아니라, 환경적으로도 문제시 되고 있다. 본 연구에서는 친환경적 도금공정의 개발을 위해 중성에서 N-(B)무전해 도금을 시행하였다. 중성의 무전해 도금공정은 어떠한 기판을 사용하여도 기판의 손상없이 도금이 가능하다는 장점을 가지고 있고, Boron(B)은 Ni을 비정질화 시키는 물질로 알려져 있다. B가 첨가된 무전해 Ni도금 박막에 있어 B의 영향을 알아보기 위하여 중성조건에서 B를 포함한 DMAB의 첨가량을 조절하였다. Ni-(B) 무전해 도금 시 도금조의 온도는 $40^{\circ}C$로 하였고, 무전해 도금액의 pH는 7(중성)로 유지하였다. Cu Foil기판을 사용하여 DMAB의 양에 따라 성장된 Ni-B무전해 도금 박막의 특성을 분석하기 위해 X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Optical microscope (OM), X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS)을 이용하였다.

  • PDF

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Effects of Crystallographic Orientation and Precipitates on Cold Rolling Behavior of Ni/Ni3Al Single Crystal (Ni/Ni3Al 단결정의 냉간압연 거동에 미치는 결정방위 및 석출물의 영향)

  • Song, S.H.;Wee, D.M.;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In this study, thin foil fabrication using Ni/Ni3Al single crystal was performed by cold-rolling. It was found that the cold-rolling behavior was strongly dependent on the initial crystallographic orientation rather than morphology of Ni3Al precipitates. The deformation banding was formed in the case of (100)[001]- and (210)[001]-oriented specimens at 83% reduction in thickness. However, the effects of Ni3Al precipitates morphology on the microstructure evolution of Ni/Ni3Al single crystals during cold-rolling were not so serious comparing with the effects of initial crystallographic orientation. Therefore, it could be concluded that the deformation behavior of Ni/Ni3Al single crystals at serious strain level was strongly dependent on the initial crystallographic orientation rather than the morphology of Ni3Al precipitates, whereas the initial deformation behavior was related to both crystallographic orientation and the morphology of Ni3Al precipitates.

A Study on the Diffusion Bonding of Mg-Ni under Low Eutectic Temperature (최소 공정온도하에서 Mg-Ni의 열확산 접합에 관한 연구)

  • Jin, Yeung Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Diffusion bonding is a technique that has the ability to join materials with minimum change in joint micro-structure and deformation of the component. The quality of the joints produced was examined by metallurgical characterization and the joint micro-structure developed across the diffusion bonding was related to changes in mechanical properties as a function of the bonding time. An increase in bonding time also resulted in an increase in the micro-hardness of the joint interface from 55 VHN to 180 VHN, The increase in hardness was attributed to the formation of intermetallic compounds which increased in concentration as bonding time increased.

Study on Thermal expansion properties of metal foils substrate for flexible solar cells (플렉서블 태양전지 기판재용 금속포일의 열팽창 특성 연구)

  • Yim, Tai-Hong;Lee, Heung-Yeol;Koo, Seung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.265-268
    • /
    • 2007
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 상업적으로 응용되거나 연구에 활용되는 플렉서블 기판재의 단점을 보완할 수 있는 가능성을 밝혀보기 위해 전주성형법으로 합금 금속 포일을 제조하여 상용 금속 기판재의 열팽창 거동과 비교해 보았다. 본 연구에서는 플렉서블 태양전지용으로 적용되거나 연구되고 있는 금속 기판 재료인 두께 50 ${\mu}m$인 Ti, Mo, Al 포일을 선택하여 열팽창거동을 조사하였고 이를 전주성형법으로 제조한 두께 10 ${\mu}m$인 Fe-40Ni, Fe-45Ni, Fe-52Ni 합금포일의 열팽창 거동과 비교 분석하였다. 금속 및 합금 포일의 열팽창 거동은 TMA 장비를 사용하여 조사하였다.

  • PDF

Optimization of reactive nano-foil by the magnetron sputtering and industrial application (마그네트론 스퍼터링을 이용한 반응성 나노 포일의 제조 공정 최적화 및 산업적 응용)

  • Jo, Yong-Gi;Lee, Won-Beom;Yu, Se-Hun;Choe, Yun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • Al과 Ni이 나노 두께로 적층되어 있는 나노 포일은 외부의 촉발에 의해 원자수준의 상호 확산을 통해 합금화 된다. AlNi 합금이 되서 $-{\Delta}H$의 변화로 인하여, 외부에 열을 공급하게 되어 최대 엔탈피의 변화 일어날 수 있는 Al과 Ni의 혼합비율을 조사하였다. 나노 포일의 제조 공정은 마그네트론 스퍼터링을 이용하였으며, 나노 박막의 두께 및 적층 공정에 대한 공정 최적화를 하였다. 제조된 나노 포일은 금속-세라믹의 상온접합을 실시하여 산업적 응용에 대한 가능성을 고찰하고자 하였다.

  • PDF

The Fabrication and Characteristics of White Emission using CCM on Flexible Substrate (플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가)

  • Kim, Gi-Ryoung;Ahn, Sung-Il;Kum, Jeong-Hun;Lee, Heung-Ryeol;Yim, Tae-Hong;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.911-915
    • /
    • 2008
  • EL (electro-luminescent) device as a light source has an advantage in embodying large area with great flexibility. On nickel foil as an electrode and backplane, we demonstrated a white EL flexible light source with blue phosphor layer combined with color change layer. A correlation between color change layer and color coordination was analyzed by Gaussian method, and then the color coordinate was controlled near to (0.33, 0.33) of pure white light.

Imprint를 이용한 Stamp 제작방법

  • Gwak, Jeong-Bok;Lee, Sang-Mun;Na, Seung-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.206-206
    • /
    • 2007
  • PCB기판 제작에 있어서 미세패턴을 형성하기 위한 차세대 공법으로 imprint공법을 이용하여 PCB기판제작에 대한 내용입니다. imprinting을 하기 위해서 미세때턴이 형성된 Tool-foil을 이용하여 imprinting시 Via hole을 동시 가공을 함으로서, 공정 비용 절감과 공정 프로세스 단축의 효과를 볼수 있다. 하지만 대면적(405*510size) imprint용 N-stamp제작이 쉽지 않으며, Ni-stamp가격 또한 만만치 않으며, 대면적 size일수록 이형처리 또한 쉽지 않다. 이형문제와 Stamp제작 비용을 줄이기 Cu-stamp를 제작 하여, Imprint후 이형처리 하지 않으며, Stamp제작 또한 쉬우며, 가격도 싸기 때문에 그에 따른 기대효과를 간략하게 소개 하고자 한다.

  • PDF