• 제목/요약/키워드: Ni-based superalloy

검색결과 69건 처리시간 0.028초

엔진 블리스크 제조를 위한 초내열합금 이종재의 HIP Diffusion Bonding (HIP Diffusion Bonding of Two Types of Superalloys for Engine Blisk Applications)

  • 나영상;황형철;염종택;권영삼;박노광
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.60-65
    • /
    • 2003
  • HIP diffusion bonding of Ni-based superalloys, cast Mar-M247 (MM247) and Udimet 720 (U720) powder, was experimentally and numerically studied. Subsolvus HIP treatment was optimized by investigating the variations of high temperature tensile properties of HIP-bonded specimens with powder size, HIP'ing time, etc. While the tensile strength at high temperatures showed no detectable changes, the tensile elongation and reduction in area were slightly increased as the powder size decreased from -140 mesh to -270 mesh. While as-HIP'ed U720 showed a high tensile strength comparable to that of lorded U720 alloy, the HIP diffusion-bonded specimen showed a strength lower than the forged U720 alloy and the cast MM247 alloy The increase of HIP'ing tune from 2 hours to 3 hours resulted in a rapid risc of tensile strength and elongation due to the disappearence of microvoids in the cast MM247. FEM simulation for HIP process was conducted by applying the McMeeking micromechanical model, which uses power-law creep model as constitutive equations. ABAQUS user subroutine CREEP with an implemented microscopic model was used for the simulation. Numerical simulation was shown to be essential for the near-net shape manufacturing as well as the HIP process optimization.

인코넬 713C 합금의 레이저 용접성 평가 (Evaluation of the Laser Weldability of Inconel 713C alloy)

  • 강민정;김철희;김영민
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.68-73
    • /
    • 2017
  • During welding of Ni based superalloy, hot cracking was usually happen in the fusion zone of a weld. In this study, the laser weldability of Inconel 713C alloy for the turbocharger wastegate valve (WGV) was evaluated with various welding conditions, such as laser power, welding speed, shielding gas. Welding conditions were optimized by bead-on-plate (BOP) and butt joint welding. For the evaluation of laser weldability, bead shapes and weld microstructures were investigated and tensile test was conducted. The fracture surfaces were investigated for the understanding the cause of the fracture.

7FA/FA+급 1 단 버켓 위한 신정비기법 개발 (New Repair Technologies for 7FA/FA+ Class Stage 1 Buckets)

  • 강신호;정길진;김대은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2205-2210
    • /
    • 2003
  • The 1st stage bucket of the 170MW simple cycle gas turbine is one of the components that is normally run in exposed state at the highest thermally stressful environment while the turbine is operating. After certain period operation, various type of damages are easily found and the damages are identified as due to the turbine operating mode of which the demand of the electricity power is very peaking and cyclic. Since this trend is more evident at some part of power plants in Korea and it has caused higher scrap rate of the bucket at the first repair interval than other country. Therefore, demand for the higher capability and alternative technologies which allow salvaging more buckets and preventing from severe damages is always high. In this study, a review and estimation of the repair technologies for the past 5 years to present have been conducted and show results.

  • PDF

팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징 (Aluminizing of Incoroy 909 Alloy by Pack Cementation Method)

  • 안진성;권순우;윤재홍;박봉규
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.173-178
    • /
    • 2006
  • Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

HIP과 열처리공정을 이용한 Ni기 초합금 소재의 미세조직 및 기계적 특성 분석 (Evaluation of the Microstructure and Mechanical Properties for Ni Superalloy Materials Using HIP and Post Heat Treatment)

  • 김영대;현중섭;장성용
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.137-143
    • /
    • 2020
  • 가스터빈 고온부품 소재로 사용되는 Ni기 초합금 CM247LC 소재에 대한 최적 후처리 조건을 도출하기 위해 일방향 응고 주조법을 통한 봉상시험편을 제작하였다. 제작된 시험편은 HIP (Hot Isostatic Pressing) 처리 및 후열처리를 통해 기계적 특성과 미세 구조를 분석하여 최적의 HIP처리 조건을 도출하고자 하였다. CM247LC 소재의 경우 가스터빈 블레이드의 대체 소재로써 시제품 제작을 위한 다양한 연구가 진행되고 있다. 특히 블레이드의 경우 고속의 회전체로 고온 및 고압의 운전 환경에 노출되어 손상 시 후단의 블레이드와 베인에 대해 추가적인 설비 파손을 야기하여 막대한 경제적 손실을 초래할 수 있다. 따라서, CM247LC 소재가 블레이드 시제품 제작에 사용되기 위해서는 미세구조와 기계적 특성에 대한 신뢰성이 확보되어야 한다. 따라서 본 연구에서는 CM247LC 소재에 대한 기계적 특성 향상을 위해 전력연구원에서 설계한 기준에 따라 HIP처리 및 열처리를 수행하고 미세조직 특성 및 기계적 특성 분석을 통해 기존 1,300℃급 가스터빈 블레이드에 소재로 활용되고 있는 GTD111DS 소재와 기계적 특성을 비교 평가하였다.

Ni계 초내열합금 NIMONIC 80A의 고온변형거동 (High Temperature Deformation Behavior of a NIMONIC 80A Ni-based Superalloy)

  • 하민철;황시우;김종수;김철유;박경태
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.258-263
    • /
    • 2013
  • The deformation behavior of NIMONIC 80A was studied in the high temperature range of $900{\sim}1200^{\circ}C$ and for strain rates varying between 0.02 and $20s^{-1}$ via the hot compression test. Processing maps for hot working were constructed on the basis of the power dissipation efficiency using a dynamic material model. The results showed that the strength during hot compression increased with increasing strain rate and decreasing temperature. At low strains, the processing map of NIMONIC 80A did not reveal any instability domain regardless of the strain rate and temperature. However, at high strains, the processing map exhibited an instability domain at a low strain rate of $0.2s^{-1}$ and within a temperature range of $900{\sim}960^{\circ}C$. In the instability domain, the deformed microstructure exhibited shear bands and carbide precipitation while, in the safe domain, full recrystallization occurred.

니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰 (Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃)

  • 정수진;이경근;김동진
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발 (Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region)

  • 홍경태;옥명렬;서진유
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.93-96
    • /
    • 2003
  • Recently, various bulk metallic glasses (BMG's) haying good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. In our previous work, we evaluated the deformation behavior and some other basic properties of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. In this study, we investigated the micro forming of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. The process condition was chosen based on the viscosity data from TMA, and superalloy and Si wafer with micro patterns on the surface were used as forming die. The alloy showed good replication of the patterns. However, some stripe patterns, resembling scratches, appeared on the deformed alloy surface. These scratches can be reduced or eliminated by polishing before forming.ing.ore forming.ing.

  • PDF

탄소나노튜브의 합성수율 증대와 저온 합성에 미치는 기판 전처리의 영향 (Effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of carbon nanotubes)

  • 신의철;조성일;정구환
    • 산업기술연구
    • /
    • 제39권1호
    • /
    • pp.7-14
    • /
    • 2019
  • Carbon nanotubes (CNT) on metal substrates are definitely beneficial because they can maintain robust mechanical stability and high conductivity between CNT and metal interfaces. Here, we report direct growth of CNT on Ni-based superalloy, Inconel 600, using thermal chemical vapor deposition (CVD) with acetylene feedstock in the growth temperature range of $400-725^{\circ}C$. Furthermore, we studied the effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of CNT on Inconel 600. Activation energy (AE) for CNT growth was estimated from the CNT height change with respect to the growth temperature. The AE values significantly decreased from 205.03 to 24.35 kJ/mol by the pretreatment of thermal oxidation of Inconel substrate at $725^{\circ}C$ under ambient. Higher oxidation temperature tends to have lower activation energy. The results have shown the importance of pretreatment temperature on CNT growth yield and growth temperature decrease.