Browse > Article
http://dx.doi.org/10.22805/JIT.2019.39.1.007

Effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of carbon nanotubes  

Shin, Eui-Chul (J&L Tech)
Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Kangwon National University)
Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
Publication Information
Journal of Industrial Technology / v.39, no.1, 2019 , pp. 7-14 More about this Journal
Abstract
Carbon nanotubes (CNT) on metal substrates are definitely beneficial because they can maintain robust mechanical stability and high conductivity between CNT and metal interfaces. Here, we report direct growth of CNT on Ni-based superalloy, Inconel 600, using thermal chemical vapor deposition (CVD) with acetylene feedstock in the growth temperature range of $400-725^{\circ}C$. Furthermore, we studied the effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of CNT on Inconel 600. Activation energy (AE) for CNT growth was estimated from the CNT height change with respect to the growth temperature. The AE values significantly decreased from 205.03 to 24.35 kJ/mol by the pretreatment of thermal oxidation of Inconel substrate at $725^{\circ}C$ under ambient. Higher oxidation temperature tends to have lower activation energy. The results have shown the importance of pretreatment temperature on CNT growth yield and growth temperature decrease.
Keywords
Carbon nanotubes; Chemical vapor deposition; Substrate pretreatment; Growth yield enhancement; Growth temperature reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iijima, S., 1991, Helical Microtubules of Graphitic Carbon, Nature, 354 56.   DOI
2 Ajayan, P.M., 1999, Nanotubes from Carbon, Chem. Rev., 99 1787.   DOI
3 Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R., 1993, Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls, Nature, 363 605.   DOI
4 Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, Lefrant, S., Deniard, P., Lee, R., Fischer, J.E., 1997, Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique, Nature, 388 756.   DOI
5 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., 1996, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273 483.   DOI
6 Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, Z.G., 1996, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 274 1701.   DOI
7 Geohegan, D.B., Puretzky, A.A., Ivanov, I.N., Jesse, S., Eres, G., Howe, J.Y., 2003, In Situ Growth Rate Measurements and Length Control during Chemical Vapor Deposition of Vertically Aligned Multiwall Carbon Nanotubes, Appl. Phys. Lett, 83 1851.   DOI
8 Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., 1998, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, 282 1105.   DOI
9 Ducati, C., Alexandrou, I., Chhowalla, M., Amaratunga, G.A.J., Robertson, J., 2002, Temperature Selective Growth of Carbon Nanotubes by Chemical Vapor Deposition, J. Appl. Phys, 92 3299.   DOI
10 Kim, K.E., Kim, K.J., Jung, W.S., Bae, S.Y., Park, J.H., Choi, J.H., Choo, J.B., 2005, Investigation on the Temperature-Dependent Growth Rate of Carbon Nanotubes Using Chemical Vapor Deposition of Ferrocene and Acetylene, Chem. Phys. Lett, 401 459.   DOI
11 Duy, D.Q., Kim, H.S., Yoon, D.M., Lee, K.J., Ha, J.W., Hwang, Y.G., Lee, C.H., Cong, B.T., 2009, Growth of Carbon Nanotubes on Stainless Steel Substrate by DC-PECVD, Appl. Surf. Sci, 256 1065.   DOI
12 Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M., 2002, Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol, Chem. Phys. Lett, 360 229.   DOI
13 Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., Milne, W.I., 2001, Growth Process Conditions of Vertically Aligned Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition, J. Appl. Phys, 90 5308.   DOI
14 Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., Gu, Z., 2008, Influence of Ethylene and Hydrogen Flow Rates on the Wall Number, Crystallinity, and Length of Millimeter-Long Carbon Nanotube Array, J. Phys. Chem. C 112 12706.   DOI
15 Gao, L., Peng, A., Wang, Z.Y., Zhang, H., Shi, Z., Gu, Z., Cao, G., Ding, B., 2008, Growth of Aligned Carbon Nanotube Arrays on Metallic Substrate and Its Application to Supercapacitors, Solid State Commun, 146 380.   DOI
16 Hiraoka, T., Yamada, T., Hata, K., Futaba, D.N., Kurachi, H., Uemura, S., Yumura, M., Iijima, S., 2006, Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils, J. Am. Chem. Soc., 128 13338.   DOI
17 Masarapu, C., Wei, B., 2007, Direct Growth of Aligned Multiwalled Carbon Nanotubes on Treated Stainless Steel Substrates, Langmuir, 23 9046.   DOI
18 Yi, W., Yang, Q., 2010, CVD Growth and Field Electron Emission of Aligned Carbon Nanotubes on Oxidized Inconel Plates without Addition of Catalyst, Diam. Relat. Mater, 19 870.   DOI
19 Nessim, G.D., Seita, M., O'Brien, K.P., Hart, A.J., Bonaparte, R.K., Mitchell R.R., Thompson, C.V., 2009, Low Temeprature Synthesis of Vertically Aligned Carbon Nanotubes with Electrical Contact to Metallic Substrates Enabled by Thermal Decomposition of the Carbon Feedstock, Nano Lett, 9 3398.   DOI
20 Pal, S.K., Talapatra, S., Kar, S., Ci, L., Vajtai, R., Borca-Tasciuc, T., Schadler, L.S., Ajayan, P.M., 2008, Time and Temperature Dependence of Multi-Walled Carbon Nanotube Growth on Inconel 600, Nanotechnol, 19 45610.   DOI