• Title/Summary/Keyword: Ni-based alloy

Search Result 313, Processing Time 0.022 seconds

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase (Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석)

  • Park, Chun Woong;Byun, Jong Min;Choi, Won June;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys (Ni기 비정질 벌크합금의 제조와 기계적 성질)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon;Kim, Young Do;Lee, Kee-Ahn;Kim, Hwi-Jun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.

The Effect of Milling Conditions on Microstructure and Phase Transformation Behavior of Ti-Ni Based Alloy Powders (Ti-Ni계 합금분말의 미세조직 및 상변태거동에 미치는 밀링조건의 영향)

  • 강상호;남태현
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • Ti-50Ni(at%) and Ti-40Ni-10Cu(at%) alloy powders have been fabricated by ball milling method, and their microstructure and phase transformation behavior were investigated by means of scanning electron microscopy/energy dispersive spectrometry, differential scanning calorimetry (DSC), X-ray diffractions and transmission electron microscopy. In order to investigate the effect of ball milling conditions on transformation behavior, ball milling speed and time were varied. Ti-50Ni alloy powders fabricated with the milling speed more than 250 rpm were amorphous, while those done with the milling speed of 100rpm were crystalline. In contrast to Ti-50Ni alloy powders, Ti-40Ni-10Cu alloy powders were crystalline, irrespective of ball milling conditions. DSC peaks corresponding to martensitic transformation were almost discernable in alloy powders fabricated with the milling speed more than 250 rpm, while those were seen clearly in alloy powders fabricated with the milling speed of 100 rpm. This was attributed to the fact that a strain energy introduced during ball milling suppressed martensitic transformation.

  • PDF

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Fabrication and hydrogen storage property of eutectic Mg-Ni based alloy powder (공정 Mg-Ni계 합금 분말의 제조 및 수소저장 특성)

  • Hong, Seong-Hyeon;Bae, Jong-Soo;Yim, Chang-Dong;Na, Young-Sang;Song, Myoung-Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The eutectic Mg-23.5%Ni alloy was casted by melting and solidification. The powders of Mg-23.5%Ni and (Mg-23.5%Ni)-10% iron oxide were prepared by mechanical grinding of casted Mg-Ni alloy and casted Mg-Ni alloy+oxide, respectively. As milling time increases, hydriding and dehydriding rates of Mg-Ni and Mg-Ni-oxide alloy powders increase. The additions of iron oxide to Mg-Ni alloy and Mg-Ni-oxide increase hydriding rates and slightly decrease dehydriding rates.

A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery (Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구)

  • Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF