• Title/Summary/Keyword: Ni-based

Search Result 1,600, Processing Time 0.033 seconds

Effect of Interface Roughness on Magnetoresistance of[Ni/Mn] Superlattice-Based Spin Valves

  • J.R. Rhee;Kim, M.Y.;J.Y. Hwang;Lee, S.S.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.145-147
    • /
    • 2001
  • The effect of interface roughness between [Ni/Mn] superlattice and pinned NiFe layer on magnetoresistance (MR) of [Ni/Mn] superlattice-based spin valve films was investigated. Antiferromagnetic phase structure and interface roughness of [Ni/Mn] superlattice spin valve films were compared in the as-deposited and the annealed samples at 240$\^{C}$, respectively. Surface morphology of spin valves was substantially flattened due to the formation of the antiferromatic NiMn phase. In case of Co insertion between Cu and NiFe, the interlace roughness and MR ratio in the annealed [NiMn] superlattice and pinned NiFe/Co layer increased more than those in the annealed [Ni/Mn] superlattice and pinned NiFe layers respectively.

  • PDF

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase (Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석)

  • Park, Chun Woong;Byun, Jong Min;Choi, Won June;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Adsorption and Biological Properties of Ni-treated PAN Based Activated Carbon Fiber (Ni가 처리된 PAN계 활성탄소섬유의 흡착특성과 생물학적 특성)

  • Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.194-199
    • /
    • 2000
  • The study on the adsorption, the surface properties and the antibacterial effects of the Ni-treated PAN based activated carbon fibers was carried out. In the adsorption study on the Ni-treated PAN based ACFs, Type I isotherms for N1-N3 and Type II-Type III isotherms for N4-N6 were obtained, respectively. Futhermore, their adsorbed volumes slowly were decreased with the increase in the mole concentration of Ni on the treated PAN based ACFs. From the BET equation, the specific surface areas of the Ni-treated PAN based ACFs were in the range of $692.58-895.24m^2/g$. The micropore volumes obtained from ${\alpha}_s$-method using common-t value were $0.19-0.56cm^3/g$. The surfaces of PAN based ACFs partially blocked by metal after the treatment were observed from the SEM micrographs. Finally, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5-100% and the antibacterial effect was increased with the increase in mole concentration of Ni treated.

  • PDF

Heterogeneous Catalysts Fabricated by Atomic Layer Deposition

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.128-128
    • /
    • 2013
  • Fabrication of heterogeneous catalysts using Atomic Layer Deposition (ALD) has recently been attracting attention of surface chemists and physicists. In this talk, I will present recent results about structures and chemical activities of various catalysts prepared by ALD, particularly focusing on Ni-based catalysts. Ni has been considered as potential catalysts for $CO_2$ reforming of methane (CRM); however, Ni often undergoes rapid decrease in catalytic activity with time, and therefore, application of Ni as catalysts for CRM has been regarded as difficult so far. Deactivation of Ni catalysts during CRM reaction is from either coke formation on Ni surface or sintering of Ni particles during reaction. Two different strategies have been used for enhancing stability of Ni-based catalysts; $TiO_2$ nanoparticles were deposited on micrometer-size Ni particles by ALD, which turned out to reduce coke formation on Ni surfaces. Ni nanoparticles deposited by ALD on mesoporous silica showed high activity and long-term stability from CRM without coke deposition and sintering during CRM reaction. Ni-based catalysts have been also used for oxidation of toluene, which is one of the most notorious gases responsible for sick-building syndrome. It was shown that onset-temperature of Ni catalysts for toluene oxidation is as low as $120^{\circ}C$. At $250\circ}C$, total oxidation of toluene to $CO_2$ with a 100% conversion was found.

  • PDF

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

CO2 reforming of methane based on TiO2/Ni-based catalysts

  • Kim, Dong-Wun;Seo, Hyun-Ook;Kim, Kwang-Dae;Dey, Nilay Kumar;Kim, Myoung-Joo;Jeong, Myoung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.60-60
    • /
    • 2010
  • CO2 reforming of methane (CRM) based on Ni catalysts was studied using temperature programmed reaction (TPR). The onset temperature of the CRM reaction was increased in a repeated TPR experiments. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy showed formation of graphite structures on Ni during CRM reaction, which deactivate Ni-surfaces. Attempts were made for inhibiting deactivation of Ni surfaces and reducing onset-temperature of the CRM reaction by various surface modification techniques, which will be presented in this poster.

  • PDF

Effect of Process Parameters on the Hardness and Wear Rate of Thermal Sprayed Ni-based Coatings (니켈기 경질 용사코팅의 경도 및 마모율에 미치는 공정조건의 영향)

  • Kim, K.T.;Kim, J.D.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • The various process parameters of thermal spray process affects on quality of Ni-based coatings. Thus, there is need to analyze the effect of process parameters on quality of Ni-based coatings. In this paper, the effects of process parameters on hardness and wear rate of Ni-based coatings were investigated using 4 design of experiments. First, the Ni-based coatings were fabricated according to $L_9(3^4)$ orthogonal array. The hardness tests and the wear tests were performed on the Ni-based coatings. The analysis of variance for the hardness and wear rate were carried out. As a results, the acetylene gas flow and the powder feed rate were identified as main factors effected on the hardness and the oxygen gas flow and the acetylene gas flow were identified as main factors effected on the wear rate. The full factorial experiments design with different levels was applied for investigation of effect of these main factors.

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.