• Title/Summary/Keyword: Ni-Ti Alloy

Search Result 393, Processing Time 0.037 seconds

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

A study of mechanical properties and development of intelligent composite using TiNiCo shape memory alloy (TiNiCo 형상기억복합재료의 기계적특성에 관한 연구)

  • 박영철;한근조;박동성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.465-469
    • /
    • 1997
  • In this paper, shape memory compsites are made by powder metallurgy. And then, an self-strengthening effect of the composites by shape memory effect above inverse transformation temperature A/sab f/ of TiNi alloy discussed. Moreover, TiNiCo/Al composite is made by using TiNiCo alloy as fiber. And it is discused aboutaffection of Co in the shape memory composite. The results of the intelligent properties of TiNi/Ai-radical shape memory composite, using SMA, by powder metallurgy are the tensile strength of TiNiCo wire is much higher than that of TiNi wire. and the strength of TiNiCo/Al composite is generally higher than that TiNi/Al composite.

  • PDF

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting (진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성)

  • Park, Gwang-Hun;Park, Seong-Gi;Sin, Sun-Gi;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

A Study of the Characteristics of Cast Ni-Ti Alloy for Biomaterial with Compositional Change (정밀 주조한 생체용 Ni-Ti합금의 조성변화에 따른 특성 연구)

  • 권오원;김교한
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 1993
  • In thls study, the effects of the composltional change of cast Ni-Ti alloys on its characteristics including mechanical properties, phase transformation temperature, and ion releasing rate were investigated. brittle:behavior was shown in the stress-strain curve of the alloy containing low Ti content (Ni-44.0%Ti). By increasing the Ti content, the trend in stress-strain curves changed from that of superelasticity to that of shape memory effect(Ni-44.4%Ti, Ni-45.1%Ti, Ni-45, 5%Ti). Phase transformation temperature ($A_f, {\;}M_5$ point) increased with increasing the Ti content. lon releasing rate of four types of Mi-Ti alloys was very low compared to that of the dental commerical Ni-Cr alloy.

  • PDF

Effect of Heat Treatment on the Microstuctures and Mechanical Properties of TiC Dispersed Ni-base Alloy (TiC 분산된 니켈기 합금의 미세조직 및 기계적 특성에 미치는 열처리 영향)

  • Hong, Seong-Hyeon;Hwang, Keum-Chul;Rhee, Won-Hyuk;Chin, Eog-Yong
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2002
  • The microstructures and properties of TiC dispersed nickel-base alloy were studied in this work. The alloy prepared by powder metallurgical processing was solution treated, 1st-aged at $880^{\circ}C$ for 16 hours, and then 2nd-aged at $760^{\circ}C$ for 4 hours. Microstucture of sintered specimen showed that TiC particles are uniformly dispersed in Ni base alloy. In the specimen aged at $880^{\circ}C$ for 8 hours, the fine $\gammaNi_3$(Al,Ti) precipitates with round shape are observed and the very fine $\gammaNi_3$(Al,Ti) particles with round shape are precipitated in the specimen aged at $760^{\circ}C$ for 4 hours. The presence of ${\gamma}$precipitates in TiC/Ni base alloy increased the hardness and wear resistance of the specimen. The hardness and wear resistance of the Ni-base with TiC are higher than those of conventional Ni-base superalloy X-750 because of dispersion strengthening of TiC particles. The hardness, transverse rupture strength and resistance of the specimen 2nd-aged at $760^{\circ}C$ for 4 hours are higher than those of 1st-aged specimen due to ultrafine $\gammaNi_3$(Al,Ti) precipitates.

Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과)

  • Lee Jin-Kyung;Park Young-Chul;Lee Kyu-Chang;Lee Sang-Pill;Cho Youn-Ho;Lee Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

Shape Memory Characteristics and Mechanical Properties of Rapidly Solidified $Ti_{50}Ni_{20}Cu_{30}$ Alloy Strips (급냉응고된 $Ti_{50}Ni_{20}Cu_{30}$ 합금 스트립의 형상기억특성과 기계적특성)

  • Kim, Yoen-Wook
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2009
  • Microstructures and shape memory characteristics of $Ti_{50}Ni_{20}Cu_{30}$ alloy strips fabricated by arc melt overflow have been investigated by means of XRD, optical microscopy and DSC. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. X-ray diffraction analysis showed that one-step martensitic transformation of B2-B19 occurred in the alloy strips. According to the DSC analysis, it was known that the martensitic transformation temperature ($M_s$) of B2 $\rightarrow$ B19 in $Ti_{50}Ni_{20}Cu_{30}$ strip is $57^{\circ}C$. During thermal cyclic deformation with the applied stress of 60 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $3.7^{\circ}C$ and 1.6%, respectively. The as-cast strip of $Ti_{50}Ni_{20}Cu_{30}$ alloy also showed a superelasticity and its stress hysteresis was as small as 14 MPa. These mechanical properties and shape memory characteristics of the alloy strips were ascribed to B2-B19 transformation and the controlled microstructures produced by rapid solidification of the arc melt overflow process.

Characteristics of Ti-Ni-(XCu) Shape Memory Alloy Powders made by Gas Atomization Process (가스 분무법으로 제조한 Ti-Ni-XCu 형상기억합금분말의 특성)

  • 징동훈
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • Ti-45.2at.%Ni-5at.%Cu and Ti-40.2at.%Ni-10atat.%Cu alloy powders were fabricated by gas atomization process. The microstructures, Shape, hardness and phase transformation behaviors of the powders were investigated by means of optical microscopy, scanning electron microscopy, micro-hardness measurement, x-ray diffraction analyses and differential scanning calorimetry. The hardness of the Ti-Ni-XCu alloy powders decreased as Cu-content increased. The x-ray diffraction analyses were carried out for powders without heat treatment, and those that treated at 85$0^{\circ}C$ for an hour in a vaccum state($10^5$ torr) and then quenched into ice water. The intensity of B$19^t$ phase increased with heat treating. The monoclinic B$19^t$ martensite was formed in the Ti-Ni-XCu alloy powders during cooling.

  • PDF

Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite (형상기억복합재료의 저조공정 및 신뢰성 평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Choi, Il-Kook;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.634-641
    • /
    • 2001
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature.

  • PDF