• 제목/요약/키워드: Ni-Mo

검색결과 660건 처리시간 0.033초

대두 및 강낭콩내 미량원소의 농도 및 분포에 미치는 DTPA의 영향 (Effects of DTPA on Microelements in Soybean and Bush Bean)

  • 차종환
    • Journal of Plant Biology
    • /
    • 제16권3_4호
    • /
    • pp.40-44
    • /
    • 1973
  • Hawkeye(Fe-chlorosis resistant) and PI 54619-5-1(Fe-chlorosis sensitive) soybeans were grown with and without DPTA(diethylene triamine pentaacetic acid) in Yolo loam soil. The major purpose of the study was to compare leaf-stem distribution of microelements for different treatments which increase concentrations of microelements in plants to evaluate the role of the chelating agent in increasing translocation of the microelements. Plant responses and yields were recorded and Fe, Mn, Zn, Cu, Al, Co, N, Sn, Pb and Mo contents of leaves and stems were determined by emission spectrography. Sulfur(soil pH4) increased leaf concentrations of Mn, Zn, Cu, CO, Ni, Sn and Pb. DTPA, particularly at 50ppm in soil, increased leaf concentrations of Fe, Mn, Zn, Cu, Co, Ni and Mo. It increased Ti in leaves for the PI 54619-5-1 soybeans only. DTPA increased the ratios of the concentration in leaves to that in stems for Fe, Zn, Cu, Al, Ti, CO, Ni and Mo. Sulfur which increased the microelement concentration in both leaves and stems did not have this effect. DTPA increased the ratio at soil pH 6 and 8.5 in leaves to that in stems of the bush bean plants for Fe, Zn, Cu, Ni, but to a lesser extent in bush beans than in soybeans. PI 54619-5-1 soybeans tended to contain less of most of the metals than did Hawkeye soybeans.

  • PDF

Fe-16Cr-6Ni-6Mn-1.7Mo 스테인리스 합금의 700~900℃에서의 대기중 산화 (Atmospheric Oxidation of Fe-16Cr-6Ni-6Mn-1.7Mo Stainless Steel between 700 and 900℃)

  • 이동복
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.153-160
    • /
    • 2011
  • The AISI 216L stainless steel with a composition of Fe-16Cr-6Ni-6Mn-1.7Mo (wt.%) was oxidized at $700{\sim}900^{\circ}C$ in air for 100 h. At $700^{\circ}C$, a thin $Mn_{1.5}Cr_{1.5}O_4$ oxide layer with a thickness of $0.4{\mu}m$ formed. At $800^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $FeCr_2O_4$ oxide layer with a total thickness of $30{\mu}m$ formed. The non-adherent scale formed at $800^{\circ}C$ was susceptible to cracking. At $900^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $Mn_{1.5}Cr_{1.5}O_4$ oxide layer formed, whose total thickness was $10{\sim}15{\mu}m$. The scales formed at $900^{\circ}C$ were non-adherent and susceptible to cracking. 216 L stainless steel oxidized faster than 316 L stainless steel, owing to the increment of the Mn content and the decrement of Ni content.

Fe-Ni-Co 코바 합금의 고온변형거동에 미치는 합금원소(Mn, Mo, B) 첨가의 영향 (Effect of Alloying Elements(Mn, Mo, B) on the High Temperature Deformation Behavior of Low Thermal Expansion Fe-Ni-Co Alloy)

  • 이기안;윤애천;박중철;남궁정;김문철
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.240-248
    • /
    • 2008
  • The effect of alloying elements(Mn, S, Mo, B) on the high temperature deformation behavior of Fe-29%Ni-17%Co (Kovar) alloy were investigated. And the effect of high temperature oxidation on the hot ductility was also studied. The hot ductility of Kovar alloy was drastically increased with the addition of Mn and lowering of S content. It has been found that the brittle intergranular fracture at high temperature cracking is closely associated with the FeS sulfide along the grain boundary. When Mn was added, the type of sulfide was changed to MnS from FeS and ductile intergranular fracture and transgranular fracture were promoted. The formation of oxide layer was found to have minimized the hot ductility of the Kovar alloy significantly. Grain boundary micro-cracks in the internal oxide region were noted following deformation due to high temperature, one of which acting as a notch that caused the poor hot workability of the oxidized specimen. The addition of Mo to the Kovar alloy could also retard the decrease in the hot ductility of the oxidized specimen through the prevention of notching due to internal oxidation. Hot ductility was remarkably improved by the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range ($900{\sim}1000^{\circ}C$).

Investigations on the Magneto-optical Properties of Bilayered Co/Ni Micro-patterned Anti-dot Arrays

  • Deshpande, N.G.;Zheng, H.Y.;Hwang, J.S.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.251-251
    • /
    • 2012
  • A lot of studies are undergoing on the magneto-optical (MO) properties of patterned magnetic systems for the reason that they have potential application to information technology such as ultrahigh-speed computing. Moreover, they can be considered as the future candidates for high-density MO storage devices. Not only the technical aspects, but there have been also tremendous interests in studying their properties related to the fundamental physics. The MO Kerr-rotation effects (both in reflected and the diffracted modes) and the magnetic force microscopy (MFM) are very useful techniques to investigate the micromagnetic properties of such periodic structures. Hence, in this study, we report on the MO properties of bilayered Cobalt (Co)/ nickel (Ni) micro-patterned anti-dot arrays. Such a ferromagnetic structure was made by sequentially depositing co (40 nm)/Ni (5 nm) bilayer on a Si substrate. The anti-dot patterning with hole diameter of $1{\mu}m$ was done only on the upper Co layer using photolithography technique, while the Ni underlayer was kept uniform. The longitudinal Kerr rotation (LKR) of the zeroth- and the first-order diffracted beams were measured at an incidence of $30^{\circ}$ by using a photoelastic modulator method. The external magnetic field was applied perpendicularly to the reflected and the diffracted beams using an electromagnet capable of a maximum field of ${\pm}5$ kOe. Significantly, it was observed that the LKR of the first-order diffracted beam is nearly 4 times larger than that of the zeroth-order beam. The simulated results for the hysteresis loops matched qualitatively well with the experimentally obtained ones. In conjunction with the LKR, we also investigated the magnetic-domain structure by using a MFM system, which were analyzed to elucidate the origin of the enhanced MO rotation.

  • PDF

오스템퍼드 구상흑연주철의 파괴특성에 미치는 오스템퍼링 온도의 영향에 관한 연구 (Effect of Austempering Temperature on the Fracture Characteristics in Austempered Ductile Cast Iron)

  • 박준훈;강창룡;김창규
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.146-155
    • /
    • 1995
  • This study was performed to investigate the effect of austempering temperature on the mechanical properties and fracture characteristics of the ductile cast iron with Cu, Mo and Cu, Mo, Ni. The results obtained from this study are summarized as follows; Microstructures of Cu-Mo and Cu-Mo-Ni ductile cast iron by austempering were obtained low bainite with some martensite at $250^{\circ}C$, mixture structure of upper and low bainite obtained at $300^{\circ}C$ and upper bainite obtained at $350^{\circ}C$. Tensile, impact and fracture toughness properties were remarkably controlled by retained austenite. With increasing austempering temperature, tensile and yield strength, hardness decreased, while the elongation and impact absorption energy, fracture toughness increased. With adding Ni, tensile and yield strength increased and elongation, facture toughness and impact absorption energy decreased. Retained austenite increased with increasing austempering temperature and the fracture surface were shown mixture structure of fibrous and dimple.

  • PDF

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Using scratch test to evaluate cohesive bond strength of Mo composite coating

  • Koiprasert, Hathaipat;Thaiwatthana, Sirinee;Sheppard, Panadda
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 2015
  • Bonding strength of a thermal sprayed coating is difficult to measure using a conventional pull-off test method. Scratch test is a potential alternative testing method. An adhesive and a cohesive bond strength of the coating can be measured by the pull-off test while the scratch test performed on the cross-section of the thermal sprayed coating can only demonstrate the cohesive bond strength of the coating. Nevertheless, it is still beneficial to perform the scratch testing on the cross-section of the coating for the sake of comparison thus providing an alternative to the pull-off test. The scratch test method can reduce testing time and cost in the long run due to a significant cost reduction in consumables and energy and time saving from the curing step of the glue used in the pull-off test. This research investigates the possibility of using the scratch test to measure the cohesive bond strength of Mo/NiCrBSi composite coating. The results from the pull-off test and the scratch test indicate that the cohesive bond strengths of the Mo composite coating show similar trend and that the cohesive bond strength are increased when increasing NiCrBSi content.

Morphology Construction of Molybdenum Doped Nickel Sulfide Electrocatalyst Induced by NH4F to Promote Hydrogen Evolution Reaction

  • Baikai Zhang;Xiaohui Li;Maochang Liu
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.353-364
    • /
    • 2024
  • Through component regulation and morphological construction, it is of considerable significance to develop high-activity and high-stability electrocatalyst for hydrogen evolution in electrolytic water. In the hydrothermal process, Mo-doped nickel-based sulfide catalysts (Mo-NiS-Fx) with a variety of morphologies (prisms, rods, flakes, and cones) were created by adding NH4F with varying masses. Among these, the flaky Mo-NiS-F1.2 exhibited exceptional performance towards electrochemical hydrogen evolution reaction, surpassing most similar catalysts with an overpotential of 79 mV at 10 mA cm-2 and a Tafel slope of 49.8 mV dec-1. Significantly, Mo-NiS-F1.2 maintained its high activity for hydrogen evolution over 60 h at a current density of 10 mA cm-2, making it suitable for widespread commercial application. According to the experimental findings, an electrocatalyst with a high surface area and a porous structure is better suited to exposing more gas transfer routes and active sites, which would encourage the hydrogen evolution reaction. This study presents a straightforward procedure for creating electrocatalysts with a range of morphologies, which can serve as a model for the creation of catalysts for use in industrial manufacturing.

충남 사문암 지역 토양 식물체 및 계류의 중금속 오염 (Heavy Metal Pollutions of the Top Soil Plants and Stream Water from the Serpentinite Area Chungnam)

  • 김명희
    • 한국환경생태학회지
    • /
    • 제14권2호
    • /
    • pp.119-126
    • /
    • 2000
  • 충남 사문암 지역인 광천, 홍성, 백동, 대흥 및 유구지역의 토양, 식물체(참억새, 쑥, 리기다소나무) 및 지표수, 갱내수의 중금속 함량을 분석한 결과 사문암 토양의 Ni, Cr 및 Co 원소가 변성암 토양에 비하여 10~13배높았으며 이 원소들이 serpentine factor로 생각된다 사문암 지역간에는 이들원소의 차이가 뚜렷하지 않았다 변성암 토양식물에서보다 사문암 토양 식물에서 Ni, Cr, Co등이 높았다 리기다소나무의 원소 흡수량은 비교적 낮았고 3종 식물에서 대체로 뿌리의 원소 함량이 지상부 함량보다 높았으며 사문암 토양에서는 Ni, Cr, Co, Mo, Sc, As 및 Fe 원소들이 쑥보다 참억새에서 높았다 사문암 토양에서 생육하는 식물체 지상부의 생물학적 흡수계수는 Ni, Cr, Co, Zn, Sc, As 및 Fe 원소는 참억새에 높고Zn은 쑥에서 높았다,. 사문암 토양에서 뿌리로부터 지상부로의 원소 전이는 Ni, Cr, Co, Zn As 및 Fe 원소에 대해 쑥에서 높았고 Mo와 Sc 원소는 리기다소나무에서 높았다. 따라서 사문암 토양에서 참억새가 중금속의 흡수율은 높고 중금속에 대한 내성은 강할 것으로 사료된다 대흥지역에서 광산의 오염이 지표수 및 갱내수의 Ni. Cr, Co, Zn 및 Fe 등의 원소 농도를 높게 하였으며 비오염 계류는 오염계류의 원소 농도를 희석시켰다.

  • PDF