• Title/Summary/Keyword: Ni-Cr heater

Search Result 9, Processing Time 0.026 seconds

Gradational Double Annealing Process for Improvement of Thermal Characteristics of NiCr Thin Films (NiCr 박막의 발열 특성 개선을 위한 순차적 이중 열처리 방법 연구)

  • Kwon, Yong;Noh, Whyo-Sup;Kim, Nam-Hoon;Cho, Dong-You;Park, Jinseong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.714-719
    • /
    • 2005
  • NiCr thin film was deposited by DC magnetron sputtering on $A;_2O_3$/Si substrate with NiCr (80:20) alloy target. NiCr thin films were annealed at $300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C,\;600^{\circ}C,\;and\;700^{\circ}C$ for 6 hr in $H_2$ after annealing at $500^{\circ}C$ for 6hr in air atmosphere, respectively. To analyze NiCr thin film properties, the changes of its micro structure were Investigated through field emission scanning electron microscope (FESEM). X-ray photoelectron spectroscopy (XPS) was used to analyze a surface of NiCr thin film. Resistance of NiCr thin film was measured by 4-point probe technique. The generated heats were measured by infrared thermometer through the application of DC voltage (5 V/l2 V). NiCr thin film treated by gradational double annealing process had uniform and small grains. Maximum temperature generated heat by NiCr micro heater was $173^{\circ}C$. We expect that our results will be a useful reference in the realization of NiCr micro heater.

Design of Hot-water wit an Electric Instantaneous Water Heating Unit (분리형 전기순간가열기에 의한 온수 비데 설계)

  • 고석조;김창동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • There are an electronic and a manual type in Bidet. The electronic bidet has some advantages. it supplies multiple functions and is up easily. However, it has frequent defects and a high price. The manual bidet is not need to supply electric and is cheaper than the electronic type. However, it is needed to supply hot water and is hard to set up. In order to solve these defects, this study designed a bidet heating unit using an electric instantaneous water heating method. To get a proper heating elements, experiments were performed about a Ni-Cr heater and a film heater.

  • PDF

AC-DC Transfer Characteristics of a Bi-Sb Multijunction Thermal Converter (Bi-Sb 다중접합 열전변환기의 교류-직류 변환 특성)

  • 김진섭;이현철;함성호;이종현;이정희;박세일;권성원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.46-54
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter, which is consisted of a linear or bifilar thin film NiCr-heater and a thin film Bi-Sb thermopile, has been fabricated, and its ac-dc transfer characteristics were examined in a frequency range from 10 Hz to 10 KHz. In order to increase the thermal sensitivity and to decrease the ac-dc transfer error of a thermal converter, the heater and the hot junctions of a thermopile were prepared on a Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-diaphragm which acts as a thermal isolation layer, and the cold junctions on the Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-thin film supported with the silicon rim which functions as a heat sink. The respective thermal sensitivities in air and in a vacuum of the converter with a built-in bifilar heater were about 14.0 ㎷/㎽ and 54.0 ㎷/㎽, and the ac-dc voltage and the current transfer difference ranges in air were about $\pm$0.60 ppm and $\pm$0.11 ppm, respectively, indicating that the ac-dc transfer accuracy of the converter are much higher than that of a commercial 3-dimensional multijunction thermal converter. However, the output thermoelectric voltage fluctuation of the converter was rather high.

  • PDF

Optimal design and performance test of thermally controlled superconducting switch (열 제어형 초전도 스위치의 최적화 설계 및 특성 평가)

  • 고락길;배준한;권영길;조영식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.207-210
    • /
    • 2002
  • We had designed thermally controlled superconducting switches using a general nonlinear optimized algorithm with constraints and tested its performance. Objective function was to minimize the total volume of the superconducting switch. And constraints were to have designed resistance in normal status and temperature. In order to compare performance of the optimized superconducting switch, we made another one which had geometrically different parameters but had same structure and resistance value when the superconductor part is normal status by heater. Objective function converged very rapidly. As result, volume of the adiabatic part and total volume of the switch were reduced to more than 70% and 30% respectively. Also, even if same heater power was supplied with NiCr wire heater, the optimized superconducting switch had very fast On-OFF switching performance comparing with unoptimized switch.

  • PDF

Fabrication of Planar Multi-junction Thermal Converter (평면형 다중접합 열전변환기의 제작)

  • Kwon, Sung-Won;Park, S.I.;Cho, Y.M.;Kang, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.17-24
    • /
    • 1996
  • Planar multi-junction thermal converters were fabricated for precise measurements of the ac voltage and current by an ac-dc transfer method. A heater and a thermocouple array were fabricated onto a sandwiched membrane, $Si_{3}N_{4}$ (200 nm) / $SiO_{2}$ (400 nm) / $Si_{3}N_{4}$ (200 nm), a thickness of $0.8\;{\mu}m$ and a size of $2{\times}4\;mm^{2}$, which is supported by a surrounding frame. The NiCr heater is located at the center of the membrane vertically. Hot junctions of $48{\sim}156$ pairs of thermocouples (Cu-CuNi44) are located near or onto the heater, and cold junctions are located onto the silicon frame. Output of the thermal converters for 10 mA dc input was $76\;mV{\sim}382\;mV$ dependent on a model, and short term stability of the outputs was ${\pm}5{\sim}15\;ppm$/ 10 min with 5 mA dc input. Responsivity in air was in the range of $3.9{\sim}14.5V/W$. Responsivity of the model BF48 in air which has 48 thermocouples was 2 times or greater than that of 3 dimensional multi-junction thermal converter in vacuum which has 56 thermocouples. AC-DC transfer differences with an input of 10 mA or less were less than ${\pm}1\;ppm$ in the frequency range from 5 Hz to 2 kHz, and about $2{\sim}3\;ppm$ at 5 kHz and 10 kHz.

  • PDF

A Study on Failure Prevention of Radiant Heater Tube (복사전열 가열로 튜브의 파손방지에 대한 연구)

  • 윤기봉;심상훈;유홍선;오현환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Radiant heater tubes with an inside burner are designed to transfer the heat generated from the burner to the outside of the tube by radiation. Hence, tube metal must suffer high temperature of approximately 900-$1000^{\circ}C$. The radiant tube is usually manufactured by centrifugal casting with high Ni-Cr alloys. In this study, failure analysis results of the radiant tube are reported. Failure mechanism of the tube was investigated by visual observation of the foiled tube, metallographic study of the cracked region and chemical analysis of tube metal and oxide scales. It was argued that the main cause of the cracking is repeated oxidation of the tube metal located beneath the thick oxide scale. Oxidation was caused by abnormally high operating temperature which can be verified by aged microstructure and internal void formation.

  • PDF

Thin Film Multijunction Thermal Converter for Low Input Voltage with Low Frequency (저주파수 및 저입력전압용 박막형 다중접합 열전변환기)

  • Hwang, Chan-Soon;Lee, Hyung-Ju;Kim, Jin-Sup;Lee, Jung-Hee;Park, Se-Il;Kwon, Sung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2002
  • NiCr-heaters with three different thicknesses ranging from 400 nm to 800 nm were fabricated and their characteristics were compared for the purpose of developing a chromel-alumel multijunction thermal converter for low input voltage with low frequency. The thermoelectric effect-induced AC-DC voltage transfer difference of the thermal converter with a built-in NiCr-heater of 400 nm-thickness was ${\pm}0.51{\sim}1.69\;ppm$ in the DC reversing frequency of $40\;Hz{\sim}10\;kHz$ with appling $0.5\;V_{rms}$ and the difference was increased to ${\pm}40{\sim}{\pm}115\;ppm$ in the frequency of $40\;Hz{\sim}1\;MHz$, when both thermoelectric effects and frequency effects were considered, showing the thermal converter would be suitable for the low input voltage application with low frequency.

A Sensorless and Versatile Temperature-Control System for MEMS Microheaters (온도센서를 사용하지 않는 MEMS 마이크로히터 온도제어시스템)

  • Bae, Byung-Hoon;Yeon, Jung-Hoon;Flachsbart Bruce R.;Shannon Mark A.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.544-547
    • /
    • 2006
  • In this paper, we present a temperature-controlled system for MEMS electrical resistance heaters without a temperature sensor. To rapidly control the heater temperature, the microheater system developed consists of a power supply, power amplifier, digital ${\underline{P}}roportional-{\underline{I}}ntegral-{\underline{D}}ifferential$ (PID) controller, and a quarter bridge circuit with the microheater and three resistors are nominally balanced. The microheaters are calibrated inside a convection oven to obtain the temperature coefficient with a linear or quadratic fit. A voltage amplifier applies the supply voltage proportional to the control signal from the PID controller. Small changes in heater resistance generate a finite voltage across the quarter bridge circuit, which is fed back to the PID controller to compare with the set-point and to generate the control signal. Two MEMS microheaters are used for evaluating the developed control system - a NiCr serpentine microheater for a preconcentrator and a Nickel microheater for ${\underline{P}}olymerase\;{\underline{C}}hain\;{\underline{R}}eaction$ (PCR) chip.

Improvement of Soft Ground using Electric Heating Equipment (전기가열장치를 이용한 연약지반개량)

  • Han, Heuisoo;Im, Eunsang;Lee, Kumsung;Chang, Donghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2014
  • In this study, we developed the electric heating equipment and applied for soft ground improvement. The developed heat pipe is 4 m-length and consumes 1 kW/m, which is consisted of Ni-Cr wire. It was installed in 3.5~4.5 m below ground surface and heated for 96 hours (48 hours, 2 times). The temperature variation and vapor pressure caused by electric heating was measured by the thermometer and pressure gauge which were installed in the ground (5.0 m), and the tip resistances were measured by static electronic piezo-cone penetration test (CPT). As the results of experiments, 2-order polynomial curve was shown to adjust the variation of tip resistance and the temperature distribution with the horizontal distance from electric heater, whose R2 value is close to 1. In addition, in-situ pore-water pressure and water content was decreased.