• Title/Summary/Keyword: Ni-Cr Steel

Search Result 284, Processing Time 0.026 seconds

The Study of Structre-Peoperty-Process in Alumina Coating of Steel by Chemical Vapour Deposition Process (화학증착법에 의한 강에의 알루미나 피복에서 구조-성질-과정에 관한 연구)

  • 최진일
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.135-144
    • /
    • 1989
  • Aluminium Oxide was deposited with a C.V.D.-technique on various substrates. The effects of various treating condition such as temperature, time, heat resistance and composition of substrates were investigated in order to understand the relationship of structure, property and process. Grain size depends upon the activity of adsorption siite and coarsened with increasing temperature and time. Deposition rate decreases in order of electrolytic iron, carbon steel STS430 and STS304, since the active site for adsorption of reactant was more decreased for Cr and Ni than Fe. Oxidation resistance of alumina coated specimens improved markedely and that of stainless steel was prominent.

  • PDF

Characteristics of Tantalum Powder by Conditions of After Treatment (후처리 조건에 따른 탄탈륨 분말의 특성)

  • 윤재식;박형호;배인성;김병일
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.344-347
    • /
    • 2003
  • Pure tantalum powder has been produced by combining Na as a reducing agent, $K_2$TaF$_{7}$ as feed material, KCl and KF as a diluent in a stainless steel (SUS) bomb, using the method of metallothermic reduction. And we examined various types of after-treatment that affect the high purification of powder. A significant amount of impurities contained in recovered powder was removed in various conditions of acid washing. In particular, 20% (HCl + HNO$_3$) was effective in removing heavy metal impurities such as Fe, Cr and Ni, 8% H$_2$SO$_4$ + 8% $Al_2$(SO$_4$)$_3$ in removing fluorides such as K and F from non-reactive feed material, and 2% $H_2O$$_2$ + 1 % HF in removing oxides that formed during reaction. Significant amounts of oxygen and part of light metal impurities could be removed through deoxidation and heat treatment process. On the other hand, because it is difficult to remove completely heavy metal impurities such as Fe, Cr, and Ni through acid washing or heat treatment process if their contents are too high, it is considered desirable to inhibit these impurities from being mixed during the reduction process as much as possible.

A Study on the Fatigue behavior of Plasma Sprayed Coating Layer and Fatigue Life Variation of Steel (플라즈마 용사층의 피로거동 및 강의 피로수명 변화에 관한 연구)

  • Park, M. H.;Han, J. C.;Jung, C.;Song, Y. S.;Lo, B. H.;Lee, K. H.
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 1998
  • NiCrAly/YSZ(8wt% Y2O3-Zro2) functionally fraded thermal barrier coating (FGC) layers on a Co-base sureralloy (HAYNESS 188) substrate were fabricated using Ar shielded single torch air plasma spraying method. Functional grading were produced with the stepwise compositional change throughout layer thinkness. Microstructural observation revealed a sucessful fabrication of NiCrAly/YSZ FGC. From the results of the curvature measurement, adhesive stength measurement and thermal shock test for the FGC, it was concluded that the optimum enhance of functionally graded coating layer thinkcess and compositional pattern exit to enhance the properties of FGC, which is closely reated to the internal residual distribution with it.

  • PDF

Corrosion Properties of Duplex Stainless Steels - STS329LD and STS329J3L - for the Seawater Systems in Nuclear Power Plant

  • Chang, Hyun-Young;Park, Heung-Bae;Kim, Young-Sik;Ahn, Sang-Kon;Jang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Lean duplex stainless steels have been developed in Korea for the purpose of being used in the seawater systems of industry. There are also many important seawater systems in nuclear power plants. These systems supply seawater to cooling water condenser tubes, heat exchanger tubes, related pipes and chlorine injection systems. The flow velocity of some part of seawater systems in nuclear power plants is high and damages of components from corrosion are severe. The considered lean duplex stainless steels are STS329LD (20.3Cr-2.2Ni-1.4Mo) and STS329J3L (22.4Cr-5.7Ni-3Mo) and PRENs of them are 29.4 and 37.3 respectively. Physical, mechanical and micro-structural properties of them are evaluated, and electrochemical corrosion resistance is measured quantitatively in NaCl solution. Critical Pitting Temperatures (CPT)s are measured on these alloys and pit depths are evaluated using laser microscope. Long period field tests on these alloys are now being performed, and some results are going to be presented in the following study.

Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys (중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석)

  • Park, Chan Woong;Adomako, Nana Kwabena;Lee, Min Gyu;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.

Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort (열환원반응관용 내열강의 미세조직과 고온변형거동)

  • Choi, G.S.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.

The Effects of Cold Rolling on the Graphitization in Boron Addition High Carbon Steel (B첨가 고탄소강의 흑연화에 미치는 냉간압연의 영향)

  • Woo, K.D.;Park, Y.K.;Ryu, J.H.;Lee, C.H.;Ra, J.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • The graphitization is affected by the addition of small amount of the elements(such as Si, Al, Ni, B, Cr and Mn etc.) and the pre-treatment(such as cold rolling). Boron is well known element to accelerate the graphitization of cementite in high carbon steels. Also, cold rolling is known to accelerate the graphitization. But the graphitization nucleation mechanism by cold rolling is few reported. Therefore the effect of cold rolling in Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel on the graphitization is investigated quantitatively using hardness test, optical microscope and scanning electron microscope, neutron induced microscopic radiography. The nucleation of graphite in cold-rolled Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel is formed at void which is formed at pearlite/pearlite boundary by cold rolling. But the effect of cold rolling on graphitization in boron addition steel is more effective than that of no boron addition steel due to segregation of BN at void in boron addition steel.

  • PDF

Low Temperature Tensile Properties of High Temperature Gas-nitrided Duplex Stainless Steel

  • On, Han-Yong;Kong, Jung-Hyun;Kim, Mi-Jeong;Park, Sang-Joon;Kang, Chang-Yong;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.263-268
    • /
    • 2010
  • This investigation was focused on the low temperature tensile properties, phase change, changes in nitrogen content and corrosion resistance in the 22Cr-5Ni-3Mo duplex stainless steel after high temperature gas nitriding and solution annealing (HTGN-SA). From the HTGN-SA treatment, the duplex (ferrite + austenite) phase changed into austenite single phase. The nitrogen content of austenite single-phase steel showed a value of ~0.54%. For the HTGN-SA treated austenitic steel, tensile strength increased with lowering test temperature, on the other hand elongation showed the maximum value of 28.2% at $-100^{\circ}C$. The strain-induced martensitic transformation gave rise to lead the maximum elongation. After HTGN-SA treatment, corrosion resistance of the austenite single-phase steel increased remarkably compared with HTGN- treated steel.

Corrosion and Mechanical characteristics for 9Cr-1MoVNb Steel under SO2 gas environment (SO2 가스 환경 하에서 9Cr 템퍼드-마르텐사이트강의 부식 및 기계적 특성)

  • Jeong, Gwang-Hu;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.109-109
    • /
    • 2018
  • Cr-Mo 합금강은 고온 환경 하에서 높은 크리이프 강도와 우수한 내식성 때문에 발전설비, 석유 화학, 그리고 해양산업과 같은 여러 산업분야에서 널리 사용되고 있다. 특히, Cr-Mo 강의 내식성은 합금 내 Cr 함량에 크게 의존한다. 이는 고온에서 Cr과 O가 화학적 반응을 일으킴에 따라 보호성의 Cr 산화스케일을 형성하기 때문이다. 그러나 화석연료를 사용하는 발전설비의 경우, $SO_2$가 포함된 강한 부식성의 연소 가스가 배출되며, 이에 노출된 금속의 표면에서는 산화와 황화가 동시에 발생한다. 황화스케일은 산화스케일에 비해 매우 빠르게 성장하며, 그 특성이 매우 취약하기 때문에 황화 환경에서 금속의 내식성 및 기계적 물성치는 보다 크게 저하된다. 따라서 본 연구에서는 화력 발전소의 증기발생용 튜브 재료인 9Cr-1MoVNb 강을 선정하였으며, $SO_2$ 가스 환경 하에서의 부식 및 기계적 물성치 저하 특성을 평가하고자 하였다. 본 연구에서 사용된 9Cr-1MoVNb강의 화학 성분 조성은 0.1 C, 0.38 Si, 0.46 Mn, 0.25 Ni, 8.38 Cr, 0.93 Mo, 0.18 V, 0.09 Nb, 그리고 나머지는 Fe이다. 부식시험은 가공된 미소시험편과 인장시험편을 전기열처리로에 장입한 후, $650^{\circ}C$에서 $N_2+O_2+O_2+SO_2$ 조성의 가스를 분당 50 CC로 흘려주었다. 제작된 시험편에 대한 부식거동은 무게 증가량, optical microscope, scanning electron microsope, 그리고 energy dispersive x-ray spectrum을 통해 평가하였다. 그리고 기계적 물성치 평가를 위한 인장시험은 분당 2mm 변위제어를 통해 실시하였다. 그 결과, 9Cr-1MoVNb 강은 $SO_2$ 가스 환경 하에서 비 보호적인 Fe-풍부상의 산화 스케일층이 두껍게 형성됨에 따라 열악한 내식성을 나타냈다. 그에 따라 기계적 물성치는 저하되는 경향을 나타내었다.

  • PDF

Dip Coating of Amorphous Materials on Metal Surface (금속표면에 비정질의 피복)

  • Park, Byung-Ok;Yoon, Byung-Ha
    • Journal of Surface Science and Engineering
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 1987
  • The properties of $Cr_2O_3-Al_2O_3-SiO_2$ composite oxide coatings on steel surface were investigated. The results obtained were as follows: The microhardness of oxide coating layer increased with increasing heat-treatment temperature and $Cr_2O_3$ content in coating layer. The hardness showed the highest value (850Hv) treated at 700$^{\circ}C$ for $SiO_2:Al_2O_3:Cr_2O_3$=1:1:4. Increasing heat-treatment temperature, corrosion current density became lower and coating layer became denser. The corrosion current density showed the lowest value $(6.5{\times}10^{-5}\;Acm^2)$ treated at 750$^{\circ}C\;for\;SiO_2:Al_2O_3:Cr_2O_3$=1:1:3. These results were explained by protective layer which was formed during heat-treatment. The bonding between matrix and coating layer is expected to be made mechanically and chemically by the inter diffusion of Ni and Fe. The composite oxide coating was formed by softening of the binder with increasing heat-treatment temperature. The strengthening of coating layer is to be resulted from the dispersion of major oxide particles.

  • PDF