• Title/Summary/Keyword: Ni-Co Alloy

Search Result 343, Processing Time 0.025 seconds

Effect of Zone Annealing Velocity on the directional Recrystallization in a Ni base Oxide Dispersion Strengthened Alloys (Ni계 산화물 분산 강화 합금의 방향성 재결정에 미치는 존 어닐링 속도의 영향)

  • Kim, Young-Kyun;Yoon, Seong-June;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as $1390^{\circ}C$, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.

Magnetoresistive Effect in Ferromagnetic Thin Film(III) (강자성체 박막(Co-Ni)의 자기-저항 효과에 관한 연구(III))

  • Chang, C.G.;Yoon, M.Y.;Kim, Y.I.;Son, D.R.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 1995
  • To fabricate low field magnetic sensors using magnetoresistance(MR) effects, we deposited thin layers of $600{\AA}$ in thickness of Ni-Co(0.7Ni-0.3Co) alloy on slide glasses. In the layers we ordered 4 arms of the fullbridge sensors in the shape of grid structure to be inclined at an angle of $45^{\circ}$ to main axis and made the areal rate increase to 67%. While the response characteristics of the fabricated sensors had good linearity in the magnetic field of ${\pm}0.5mT$ ranges, the white noise was 0.2 nV and the voltage sensitivity was 7.6 $nV/{\mu}T$.

  • PDF

Characteristics and Corrosion Behaviors of Quaternary (Co/Ni/P/Mn) Electroless Plating (4성분 무전해도금(Co/Ni/P/Mn)의 특성 및 부식거동)

  • Hur, Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • The quaternary alloy (Co/Ni/P/Mn) coatings were prepared using electroless plating on the polypropylene. Compositions of the quaternary alloys (Co/Ni/P/Mn) were controlled by the amount of agents. The composition by EDS, morphology with SEM, film thickness, and surface electrical resistance of the samples were measured. Higher phosphorous content samples give larger electric resistance, thus a relationship is admitted between P content and electric resistance. The corrosivity of the coatings were evaluated by electrochemical methods in the 3.5 wt% NaCl and 5.0 wt% $H_2SO_4$ solutions, respectively. It was concluded that phosphorous addition enhances resistivity in the corrosion.

Quantitative Assessment of Initial Wear Characteristics of CoCr-Based Alloys (CoCr 기반 합금의 초기 마모 특성에 대한 정량적 평가)

  • Cha, Su-Bin;Kim, Hoe-Jin;Huynh, Ngoc-Phat;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.199-206
    • /
    • 2020
  • CoCr-based alloys have been developed as wear-resistant materials owing to their excellent mechanical properties and strong wear resistance. The purpose of this study is to experimentally assess the frictional and wear characteristics of CoCr-based alloys slid against two different counter materials subjected to various normal forces to determine the expansion applicability of CoCr-based alloys. CoCrMo and CoCr alloys were selected as the target materials and NiCr and NiCrB alloys as counter materials. Experimental tests were performed using a pin-on-reciprocating plate tribo-tester under dry lubrication. Before performing the tests, the surface of the specimens was observed through confocal microscopy and the hardness was measured using a micro-Vickers hardness tester. The wear volume of the plate was calculated at the end of the tests using confocal microscope data, and the wear rate was quantitatively obtained based on Archard's wear law. From the results, the wear rates of the CoCrMo specimens that slid against NiCr and NiCrB are 7.69 × 10-6 ㎣/Nm and 5.26 × 10-6 ㎣/Nm, respectively. The wear rates of the CoCr specimens that slid against NiCr and NiCrB were higher than those of the CoCrMo specimens by factors of approximately 4 and 8, respectively. The CoCrMo specimens further exhibited lower friction characteristics than the CoCr specimens. The findings of this study will be useful for expanded applications of CoCr-based alloys as wear-resistant materials for various mechanical parts.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Microstructure Characterization on Nano-thick Nickel Cobalt Composite Silicide on Polycrystalline Substrates (다결정 실리콘 기판 위에 형성된 나노급 니켈 코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/70 w-Poly-Si/200 $nm-SiO_2/Si$ and $10nm-Ni_{0.5}Co_{0.5}/70$ nm-Poly-Si/200 $nm-SiO_2/Si$ structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required fur annealing. Silicides underwent rapid anneal at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of the polycrystalline silicon substrate mimicking the gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profile scope were employed for the determination of cross sectional microstructure and thickness. 20nm thick nickel cobalt composite silicides on polycrystalline silicon showed low resistance up to $900^{\circ}C$, while the conventional nickle silicide showed low resistance below $900^{\circ}C$. Through TEM analysis, we confirmed that the 70nm-thick nickel cobalt composite silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. We identified $Ni_3Si_2,\;CoSi_2$ phase at $700^{\circ}C$ using an X-ray diffractometer. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo composite silicide from NiCo alloy films process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

  • PDF

An Experimental Study on The Cytotoxicity of Dental Base Metal Alleys by Extraction Method (용출법을 이용한 치과용 base metal alloy의 세포독성에 관한 실험적 연구)

  • Yoon, Min-Eui;Jin, Tai-Ho;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.123-130
    • /
    • 1989
  • In order to investigate the biocompatibility of base metal alloys in dental prosthesis, the 3 types of Ni-Cr alloys and the 3 types of Co-Cr alloys were collected and each alloy was extracted in the culture medium. L-cells derived from the subcutaneous tissue of mouse and extracted medium were cultivated. The relative growth rate of L-cells in the tissue culture was calculated with N-R assay. The obtained results were as follows: 1. In the case of the Co-Cr alloys tested, its cytotoxicity proved weak. 2. In the case of the Ni-Cr alloys tested, there was no significant degree of cytotoxicity, especially 25% Victory was proved noncytotoxicity.

  • PDF

The Effect of Ausforming Process on Mechanical Properties of Ultrahigh Strength Secondary Hardening Martensitic Steels (극초고강도 이차경화형 마르텐사이트강의 기계적성질에 미치는 오스포밍 공정의 영향)

  • Kim, S.B.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Two types of secondary hardening martensitic steels, 10Co-14Ni and 6Co-5Ni, were produced by vacuum induction melting to investigate the effect of ausforming process on mechanical properties. According to the results of present study, the alloy samples ausformed at low temperature indicated a rather low hardness level in overall aging time despite the refinement of martensite lath width. As the result can closely be related with the presence of primary carbides precipitated within the initial austenite matrix, we confirmed that, in ultrahigh strength secondary hardening martensitic alloy steels, the ausforming process can rather limit the degree of secondary hardening during the subsequent aging treatment.

Corrosion Characteristics of Fe-Si, Ni-Ti and Ni Alloy in Sulfuric Acid Environments (황산 환경에서 Fe-Si, Ni-Ti계 및 Ni 합금의 내부식성 특성)

  • Kwon, Hyuk-Chul;Kim, Dong-Jin;Kim, Hong-Pyo;Park, Ji-Yeon;Hong, Seong-Deok
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Methods of producing hydrogen include steam reforming, electrochemical decomposition of water, and the SI process. Among these methods, the Sulfur iodine process is one of the most promising processes for hydrogen production. The thermochemical sulfur-iodine (SI) process uses heat from a high-temperature-gas nuclear reactor to produce $H_2$ gas; this process is known for its production of clean energy as it does not emit $CO_2$ from water. But the SI-process takes place in an extremely corrosive environment for the materials. To endure SI environments, the materials for the SI environment will have to have strong corrosion resistance. This work studies the corrosion resistances of the Fe-Si, Ni-Ti and Ni Alloys, which are tested in SI-process environments. Among the SI-process environments, the conditions of boiling sulfuric acid and decomposed sulfuric acid are selected in this study. Before testing in boiling sulfuric acid environments, the specimens of Fe-4.5Si, Fe-6Si, Ni-4.5Si, Ni-Ti-Si-Nb and Ni-Ti-Si-Nb-B are previously given heat treatment at $1000^{\circ}C$ for 48 hrs. The reason for this heat treatment is that those specimens have a passive film on the surface. The specimens are immersed for 3~14 days in 98wt% boiling sulfuric acid. Corrosion rates are measured by using the weight change after immersion. The corrosion rates of the Fe-6Si and Ni-Ti-Si-Nb-B are found to decrease as the time passes. The corrosion rates of Fe-6si and Ni-Ti-Si-Nb-B are measured at 0.056 mm/yr and 0.16 mm/yr, respectively. Hastelloy-X, Alloy 617, Alloy 800H and Haynes 230 are tested in the decomposed sulfuric acid for one day. Alloy 800H was found to show the best corrosion resistance among the materials. The corrosion rate of Alloy 800H is measured at -0.35 mm/yr. In these results, the corrosion resistance of materials depends on the stability of the oxide film formed on the surface. After testing in boiling sulfuric acid and in decomposed sulfuric acid environments, the surfaces and compositions of specimens are analyzed by SEM and EDX.

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.