• 제목/요약/키워드: Ni-Base Alloys

검색결과 94건 처리시간 0.058초

Ni기 비정질 벌크합금의 제조와 기계적 성질 (Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys)

  • 김성규
    • 한국주조공학회지
    • /
    • 제22권6호
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究) (An experimental study of the strength and internal structure of solder joint of fixed partial denture)

  • 박상남;계기성
    • 대한치과보철학회지
    • /
    • 제23권1호
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

금전착이 치과용 합금과 전장 레진간의 접착 강도에 미치는 영향 (EFFECT OF GOLD ELECTRODEPOSIT ON THE BOND STRENGTH BETWEEN ALLOYS AND VENEERED RESIN)

  • 양홍서;박영준
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.103-117
    • /
    • 1997
  • The purpose of this experiment was to determind whether the gold electrodeposit on Pd-Ag and Ni-Cr alloys influences on the shear bond strength between veneering resin and silicoated metal surface. All the metal specimens were sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating and resin veneering. According to the metal surfaces to be veneered, experimental groups were divided into five. Group Prec : Gold alloy without gold coating Group Semi : Pd-Ag alloy without gold coating Group Base : Ni-Cr alloy without gold coating Group Semi-G : Pd-Ag alloy with gold coating Group Base-G : Ni-Cr alloy with gold coating All specimens were thermocycled 1,000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of gold electrodeposit on the shear bond strength between resin and metal interface were measured and fractured surface of the resin veneered metal was examined under the scaning electron microscope. The following results were obtained 1. The shear bond strength between resin and metal was $64.51{\pm}11.11Kg/cm^2$ in Prec group, $62.77{\pm}11.23Kg/cm^2$ in Base group and $58.97{\pm}9.20Kg/cm^2$ in Semi Group. There was no significant difference among the groups. 2. The bond strength in groups Semi-G and Base-G decreased about 17%, compared to the nongold-electrodeposit groups(Semi, Base). 3. In groups of non electrodeposit(Prec, Semi, Base), fracture occurred at the interface between alloy and resin, while fracture interface was observed between gold coating and resin in group Semi-G, and between metal substrate and gold coating in group Base-G respectively.

  • PDF

Cu 첨가에 따른 Al-Y-Ni의 나노결정화 거동 (Nanocrystallization Behavior of Al-Y-Ni with Cu Additions)

  • 홍순직;천병선;강세선;이임렬
    • 한국분말재료학회지
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 2002
  • This paper reports the results of an investigation into the effect of Cu additions upon the nano-crystallization behaviour of an Al-Y-Ni alloy. 1 at.% Cu was added to a base alloy of Al/sub 88/Y₄Ni/sub 8/ either by substitution for Al to form Al/sub 87/Y₄Ni/sub 8/Cu₁, or by substitution for Ni to form Al/sub 88/Y₄Ni/sub 7/Cu₁. Consistent with previous findings in the literature, the substitution of Cu for Al was found to increase the thermal stability of the amorphous phase whereas the substitution of Cu for Ni was found to decrease its thermal stability. Comparing the microstructures of these alloys after heat treatment to produce equivalent volume fractions of Al nanocrystals showed average grain sizes of 14 nm, 12 nm and 9 nm for the alloys Al/sub 88/Y₄Ni/sub 8/, Al/sub 87/Y₄Ni/sub 8/Cu₁respectively. The effect of Cu in refining the size of the nanocrystals was attributed to enhanced nucleation increasing the number density of the nanocrystals, rather than diffusion limited or interface limited growth.

Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열 (A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가 (Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel)

  • 김홍은;이기형;김민철;이호진;김경호;이창희
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향 (Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys)

  • 조수행;장준선;오승철;신영준;박성원
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.3-9
    • /
    • 2002
  • The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.