• Title/Summary/Keyword: Ni- 촉매 반응

Search Result 271, Processing Time 0.029 seconds

Kinetics of the Oxidation of Carbon Monoxide on NiO at Low Temperature (저온 일산화탄소의 산화반응속도론적 연구)

  • Choi, Jae-Shi;Kim, Keu-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 1974
  • The catalytic reaction between carbon monoxide and oxygen was investigated in the presence of catalysts which were specially treated by applying an annealing method at different monoxide and oxygen and at reaction temperatures in the region of partial pressures of carbon $40^{\circ}C$ to $95^{\circ}C$. The oxidation rate is highest on NiO annealed at low temperature in vacuum. The data has been correlated with the first order kinetics, and the activation energies from the Arrhenius equation are found to be 4Kcal/mole in the region of the experimental temperatures. The excess oxygen in NiO obtained from the decomposition of $NiCO_3$does not cause activation at $95^{\circ}C$. But NiO catalysts annealed again in vacuum display activation even at $40^{\circ}C$. The quantity of the excess oxygen in NiO surfaces seems to be the controlling factor in determining the rates of oxidation of carbon monoxide.

  • PDF

Nanostructure Control of PtNiN/C Catalysts for Oxygen Reduction Reaction by Regulating Displacement Rate of Precursor (전구체 치환 속도 조절을 통한 산소환원반응용 PtNiN/C 촉매의 나노구조 제어)

  • Dong-gun Kim;Seongseop Kim;Sung Jong Yoo;Pil Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • Efforts are actively underway to address the issues related to the high cost of Pt-based catalysts for oxygen reduction reactions by designing high-performance Pt-based alloys through the control of their nanostructures. In this study, a method was proposed to control the nanostructure of Pt-based alloys, either hollow or core-shell, by adjusting the pH of the solution during the galvanic replacement reaction between the carbon-supported nickel-nickel nitride composite and the Pt ions. The physical characteristics, including the state, quantity, and morphology of the metal particles under different preparation conditions, were evaluated through X-ray diffraction, transmission electron microscopy, and inductively coupled plasma. When the prepared catalysts were employed for the oxygen reduction reaction, they exhibited an improvement in area specific-activity compared to a commercial Pt/C, with a 1.7 and 1.9-fold enhancement for the hollow and core-shell structured catalysts, respectively.

Complete Oxidation of Volatile Organic Compounds(BTX) over the Supported Transition Metal Catalysts (전이금속 담지 촉매상에서 휘발성유기화합물(BTX)의 완전산화)

  • Kim, Sang-Chai;Seo, Seong-Gyu;Yu, Eui-Yeon
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • Catalytic oxidation of volatile organic compounds(benzene, toluene, xylene) over transition metals/ALO-6 catalysts was investigated in a fixed bed flow reactor system at atmospheric pressure. The orders of catalytic activities for the complete oxidation of toluene were Cu>Mn>Fe>V>Mo>Co>Ni>Zn for 15% transition metals/ALO-6 catalyst system. Increasing the calcination temperature resulted in decreasing the specific surface areas of catalyst, subsequently the catalytic activity. The loading of Cu on ALO-6 had a great effect on the catalytic activity and 5% Cu/ALO-6 catalyst showed higher catalytic activity, which may be contributed to the uniformly distributed active sites. Benzene, toluene and xylene were completely oxidized to carbon dioxide over 5% Cu/ALO-6 catalyst at over $380^{\circ}C$ and 4.5 g-cat.hr./g-mole. The orders of the kinds of reactants for catalytic activity over 5% Cu/ALO-6 were toluene>xylene>benzene. As the concentration of reactant increased, the catalytic activity decreased due to self-poison of reactant.

  • PDF

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC (용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독)

  • Moon, Hyeung-Dae;Kim, Joon-Hee;Ha, Heung Yong;Lim, Tae-Hoon;Hong, Sung-Ahn;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.754-760
    • /
    • 1999
  • The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

  • PDF

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Study on the Simple Preparation Method of Honeycomb-structured Catalysts by Temperature-regulated Chemical Vapor Deposition (온도조절 화학기상증착법을 활용한 대용량 허니컴 구조촉매 제조 연구)

  • Seo, Minhye;Kim, Soong Yeon;Kim, Young Dok;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.18-21
    • /
    • 2018
  • We report on the simple preparation method of large-scale structured catalysts by temperature-regulated chemical vapor deposition with a high cell-density ceramic honeycomb monolith. And the feasibility for dry reforming of methane catalysts was evaluated. The NiO/Cordierite (CDR) catalyst was prepared by controlling coating conditions at each temperature step, leading to a conformal deposition of NiO inside the cordierite honeycomb monolith with the cell density of 600 cpsi. The catalytic conversion of $CH_4$ and $CO_2$ for dry reforming of methane were about 83% and 90% with gas hourly space velocity of $10,000h^{-1}$ at $800^{\circ}C$, respectively. As a result, it exhibited that the temperature-regulated chemical vapor deposition method can be expedient for the preparation of large-scale structured catalysts.

$CO_2$ reforming of $CH_4$ and growth of CNT on Ni catalyst (메탄의 이산화탄소 개질반응과 사용된 Ni 촉매 표면에서의 CNT 성장)

  • Kim, Hee-Yeon;Jeong, Nam-Ho;Song, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.511-512
    • /
    • 2008
  • For the $CO_2$ reforming of $CH_4$, Ni catalyst was supported on La-hexaaluminate or on $\gamma$-$Al_2O_3$. The catalytic activities of Ni/La-hexaaluminate catalysts were measured at $700^{\circ}C$ using gas chromatography (GC) for 72 h, and the reaction was maintained up to 72 hfor the investigation of catalyst deactivation. The surface of each catalyst after 72 h reaction was investigated using SEM and TEM, and the composition of the carbon deposits was investigated by using EA, TPO and TGA. Ni/La-hexaaluminate shows higher resistance to coke deposition than conventional Ni/$Al_2O_3$ which seems to be due to strong interaction between Ni and the support material. As a result of the reforming reaction, various types of carbon deposits were created on catalyst surface and the amounts of them were much smaller in the case of La-hexaaluminate than on $Al_2O_3$.

  • PDF

Development of a Catalyst/Sorbent for Methane-Steam Reforming (메탄스팀개질반응용 촉매흡착제 개발에 관한 연구)

  • Cho, Yong-Hoon;Na, Jeong-Geol;Kim, Seong-Soo;Kim, Jin-Gul;Chung, Soo-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.307-313
    • /
    • 2006
  • In order to improve the efficiency of methane steam reforming process, a part of the system which produces hydrogen from heavy hydrocarbon resources such as coal, we combined metal catalyst with CaO sorbent and fabricated catalyst/sorbent. To increase the porosity and the compressive strength of sorbent, carbon black and ${\alpha}-alumina$ were mixed with CaO powder during preparation. The effects of sorbent composition on the physical properties were investigated by SEM, TGA, BET, XRD, abrasion strength measuring device and adsorption-desorption instrument. Sorbent with 5 wt% $Al_2O_3$ and 10 wt% carbon black showed the best physical features with $7.61kg_f$ strength and 47% $CO_2$ adsorption capability. Various metal catalysts such as Ni, Co and Fe were supported on the sorbent developed and 10 wt% Ni/sorbent was selected for methane steam reforming process based on the result of reaction experiment. The reaction system using the catalyst/sorbent showed better $H_2$ productivity compared to the detached system with catalyst and sorbent, indicating the effectiveness of the system developed in this study.