• Title/Summary/Keyword: Ni-$TiO_2$

Search Result 474, Processing Time 0.031 seconds

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Bipolar Resistance Switching Characteristics of $NiO_{1+x}$ films with Adding Higher-Valence Impurities

  • Kim, Jong-Gi;Son, Hyeon-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.370-370
    • /
    • 2010
  • The effects of adding higher-valence impurities on the bipolar resistive switching characteristics of Pt/$NiO_{1+x}$/TiN MIM stacks and physical properties were investigated. $NiO_{1+x}$ films with 14% W deposited at 20% oxygen partial pressure exhibited the bipolar resistance switching characteristics in Pt/$NiO_{1+x}$/TiN MIM stacks, while $NiO_{1+x}$ films with 8.2% W show unipolar resistance switching behavior. The relationship of W-doping and the crystallinity was studied by X-ray diffraction. The metallic Ni contents and $WO_x$ binding states with W amount was investigated by XPS. Our result showed that the metallic Ni, $WO_x$ binding states, and crystallinity in $NiO_{1+x}$ played an important role on the bipolar resistive switching.

  • PDF

Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR (저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향)

  • Jungsoo Kim;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • In order to increase the usability of H2-SCR, the NOx removal characteristics with catalyst powder of PtNi/CeO2-W-TiO2 using Ce as a co-catalyst was synthesized and coated on a porous metal structure (PMS) were evaluated. Catalyst powder of PtNi/CeO2-W-TiO2(PtNi nanoparticles onto W-TiO2, with the incorporation of ceria (CeO2) as a co-catalysts) was synthesized and coated onto a porous metal structure (PMS) to produce a Selective Catalytic Reduction (SCR) catalyst. H2-SCR with CeO2 as a co-catalyst exhibited higher NOx removal efficiency compared to H2-SCR without CeO2. Particularly, at a 10wt% CeO2 loading ratio, the NOx removal efficiency was highest at 90℃. As the amount of catalyst coating on PMS increased, the NOx removal efficiency was improved below 90℃, but it was decreased above 120℃. When the space velocity was changed from 4,000 h-1 to 20,000 h-1, the NOx removal efficiency improved at temperatures above 120℃. It was expected that the use of the catalyst could be reduced by applying the PMS with excellent specific surface area as a support.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Study on the Synthesis by the Combustion Mettled and the Electrochemical Properties of $LiNi_{1-y}M_yO_2(M=Al,\;Zn\;and\;Ti)$ for the Development of Cathode Material with Large Discharge Capacity (고용량 양극재료 개발을 위한 연소법에 의한 $LiNi_{1-y}M_yO_2(M=Al,\;Zn\;and\;Ti)$의 합성과 전기화학적 특성에 관한 연구)

  • 권익현;김훈욱;송명엽
    • 한국전기화학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.293-296
    • /
    • 2004
  • 고용량 $LiNi_{1-y}M_yO_2$(M=Al, Zn and Ti, y=0.000, 0.005, 0.010, 0.025, 0.050 and 0.100) 양극재료를 합성하기 위하여 연소법을 사용하였다. 합성한 시료들을 X-선회절 분석, 미세구조관찰, 전자침미세분석(EPMA)을 하였다. battery 충${\cdot}$방전기를 사용하여 리튬의 삽입${\cdot}$추출 반응으로 인하여 나타나는 충${\cdot}$방전 곡선의 변화를 조사하였고, 합성한 각 시편에 대해 충${\cdot}$방전 싸이클 수에 따른 방전용량의 변화를 조사하였다. XRD pattern 분석결과 모든 조성에서 $R\bar{3}m$ 구조를 보여주었다. Ni 자리에 Al, Zn, Ti를 치환한 결과 방전용량은 감소하였으나 M=Al 시료는 싸이클 특성이 증가하였다.

  • PDF

High-temperature Oxidation of Ni-based Inconel 713 Alloys at 800-1100℃ in Air (니켈기 인코넬 713합금의 800-1100℃에서의 대기중 고온산화)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.196-200
    • /
    • 2011
  • The Ni-based superalloy, Inconel 713, was oxidized at $800{\sim}1100^{\circ}C$ for 50 and 100 hours in air. It displayed excellent oxidation resistance, forming a few micrometer-thick scales. The major scale was ${\alpha}-Al_2O_3$. Other scales formed were $TiO_2$, $NiAl_2O_4$ and $Cr_2O_3$. Generally, uniform oxidation occurred over the alloy surface, resulting in the formation of ${\alpha}-Al_2O_3$ with and without $Cr_2O_3$. Other oxides such as $TiO_2$ and $NiAl_2O_4$ sometimes also formed. Locally, nodular oxidation occurred at the nodules that consisted of diverse alloying elements. The scales were adherent at $800^{\circ}C$. However, they spalled a little at $900{\sim}1100^{\circ}C$.

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3233-3237
    • /
    • 2010
  • A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.

Dielectric and Piezoelectric Properties of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 Solid Solution Ceramics (Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3계의 유전 및 압전특성)

  • 손정호;남효덕;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.523-531
    • /
    • 1988
  • The dielectric and piezoelectric properties with compositions in Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3-(PNN-PT-PZ)solid solution ceramics were investigated. In this study, the compsition ranges were 30 PNN 45mole%, 20 PT 50mole% and 50 PZ5mole%. As PT fraction were increased the grain size was increased and the fired density was decreased, but the changes of PNN fraction had no effect on the grain size. The Curie temperature was increased when PT and PNN fraction were increased. The displacement was increased but had a great hysteresis loss when PT fraction was increased. In morphotropic phase boundary, the maximum piezoelectric and electromechanical coupling factor were indicated. Morphotropic phase boundary(MPB) was 34 PT 36mole% in chang of compositions.

  • PDF

Surface and Photolytic Characteristics of Ni-TiO2 Composite Layer Electro-Plated from Non-Aqueous Electrolyte (비수용액 전해질에서 전기도금한 니켈-TiO2 복합 도금층의 표면 및 광분해 특성 연구)

  • Jo, Il-Guk;Ji, Chang-Wook;Choi, Chul-Young;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.240-244
    • /
    • 2008
  • Composite plating is a method of co-deposition of plating layer with metallic and/or non-metallic particles to improve the plating layer properties such as high corrosion resistance and photolysis of organic compounds. The properties of nickel-ceramic composite plating are significantly depend on the surface characteristics of co-deposited particles as well as the quantity in electrolyte. In this study, Ni-$TiO_2$ composite coating layer was produced by electrodeposition technique from non-aqueous eletrolyte and its surface characteristics as well as photolytic properties were investigated. The amounts of immobilized $TiO_2$ particles increased with increasing the initial $TiO_2$ particles contents in the bath. Samples electroplated with the current density of $0.5\;A/dm^2$ showed the significantly improved homogeneous $TiO_2$ particles distribution. The corrosion resistance of Ni-$TiO_2$ composite coating layer also improved with increaing the amounts of $TiO_2$ particles. Etched sample showed about 10% increased photolytic rate of organic matter compare to that of the non-etched.