Fe-Ni alloy nanoparticles were prepared by ERC (Evaporation and Rapid Condensation) method, and the crystal structure and the behavior of martensite for the nanosized alloy particles were investigated by X-ray diffraction analysis. The relation between the rate of martensite transformation and the internal strain of austenite was discussed. The lattice spaces of austenite and martensite for the nanoparticles agreed with those of the bulk materials. The rate of martensite transformation from austenite and the internal strain of austenite was reduced with decreasing the average size of Fe-Ni nanoparticles. It was thought that the residual austenite in the Ni content range of 11∼l5at% was caused by the internal strain, and the residual martensite in the Ni content range of 32∼36at% had its origin in the high surface energy of nanoparticles.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.128-128
/
2013
Fabrication of heterogeneous catalysts using Atomic Layer Deposition (ALD) has recently been attracting attention of surface chemists and physicists. In this talk, I will present recent results about structures and chemical activities of various catalysts prepared by ALD, particularly focusing on Ni-based catalysts. Ni has been considered as potential catalysts for $CO_2$ reforming of methane (CRM); however, Ni often undergoes rapid decrease in catalytic activity with time, and therefore, application of Ni as catalysts for CRM has been regarded as difficult so far. Deactivation of Ni catalysts during CRM reaction is from either coke formation on Ni surface or sintering of Ni particles during reaction. Two different strategies have been used for enhancing stability of Ni-based catalysts; $TiO_2$ nanoparticles were deposited on micrometer-size Ni particles by ALD, which turned out to reduce coke formation on Ni surfaces. Ni nanoparticles deposited by ALD on mesoporous silica showed high activity and long-term stability from CRM without coke deposition and sintering during CRM reaction. Ni-based catalysts have been also used for oxidation of toluene, which is one of the most notorious gases responsible for sick-building syndrome. It was shown that onset-temperature of Ni catalysts for toluene oxidation is as low as $120^{\circ}C$. At $250\circ}C$, total oxidation of toluene to $CO_2$ with a 100% conversion was found.
Mechanism of formation of electroless composite coatings is similar to that of electrodeposited composite coating, but the amount of particles entraped in electroless coating is higher that the one of electrodeposited coatings. The methol of entrapment by the metal for SiC and Al2O3 particles is different from that for WC particles. In the former case the particles are gracually engulfed by the depositing metal, wheran with WC a metal envelope is rapidly fomed around each particles. This difference can be attributed to the difference in electrical resistivity of the particles. Inclusion density of SiC and Al2O3 particles during copeposition depend on the particle size, agitation condition, vabration conditions and electrolyte temperatures.
Ni-coated alumina was prepared by sonochemical method. To increase an efficiency of Ni coating on alumina, amorphous alumina was prepared by sol-gel method and Ni was coated to fine particles of alumina. Ni-coated alumina was prepared from various calcination temperatures ($500^{\circ}C$, $1,000^{\circ}C$), concentrations of Ni solution (0.01 M~0.2 M) and sonochemical reaction times (30 min, 2h). The prepared fine particles were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The coating amount of Ni increased, as Ni concentration and ultrasonication time increased. The maximum amount of Ni was coated to fine particles of alumina, when Ni-coated alumina was prepared with 0.1 M concentration of Ni solution for 2 h of sonication time at $1000^{\circ}C$ of calcination temperature. The average particle size was in the range of 835.9 to 986.7 nm.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.12
no.6
/
pp.311-316
/
2002
Two different approaches, namely two-step deposition process and Bias-Enhanced Nucleation (BEN) technique have been examined for deposition of high quality diamond thin film on polycrystalline Ni which has low chemical activity with the carbon neutrals provided from the $CH_4/H_2$mixtures. A two-step deposition process, consisted of pre-deposition of soot layer at lower temperatures and subsequent deposition at higher temperature condition, has been developed to deposit diamond layer directly on Ni substrate. Diamond particles were observed after deposition step at $925^{\circ}C$ for 5 hours and those particles seem to be nucleated from the soot layer pre-deposited at lower temperatures ($810^{\circ}C$). Diamond particles of a substantial size were found on Ni substrate after biasing -220 V for 10 minutes and subsequent deposition for 2 hours while no diamond particles were observed under the conditions without applied bias.
Ni coated $Al_2O_3$ composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the $Al_2O_3$ matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between $Al_2O_3$ and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered $Al_2O_3$ monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between $Al_2O_3$ and Ni phase, and no observed microcracks at their $Al_2O_3$ and Ni interface. In the $Al_2O_3$/Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the $Al_2O_3$/Ni composite.
Ni-Zn ferrite powders in the few hundred angstrum size range and up have been synthesized by a wet direct method. The coprecipitate were prepared by adding alkaline solution into the constituent metal ions solution. and subsequent calcined at various temperature. At 95, the particles were ultrafine spherical shaped particles of about 500(A) in diameter.
Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.
Journal of Advanced Marine Engineering and Technology
/
v.40
no.10
/
pp.894-898
/
2016
Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.
Porous hybrid preforms were fabricated by reactive sintering using the compacts consisting of SiC particles, Fe and Al powders. Squeeze casting processing was employed to produce the composite in which the matrix phase is Al-Si7Mg. The microstructural change and wear resistance of the composites were investigated in terms of an amount of SiC particles. The wear loss was increased with increasing the contact pressure in the alloy containing SiC particles coated with Cu. The most drastic change was found to the specimen tested at 2.5 MPa of contact pressure. Concerning the alloys containing SiC particles coated with Ni-P, a drastic increase in the wear loss exhibited at 2 MPa of contact pressure in those alloys containing 4 and 8 wt. % of SiC particles coated with Ni-P. In the alloy containing 16 wt. % a proportional increase in wear loss was observed to the change of contact pressure. With respecting to the sliding velocity, the wear loss of the alloy containing SiC particles coated with Cu increased at the initial stage of wear process and then decreased. Similar result was found in the alloys containing SiC particles coated with Ni-P. On the basis of the present results obtained, it was found that wear resistance of the alloys tested was improved to show in the order of the alloy reinforced by coated SiC particles > by uncoated SiC particles > by intermetallic compound without SiC particles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.