• Title/Summary/Keyword: Ni particle

Search Result 479, Processing Time 0.026 seconds

Electrochemical Hydrogenation Behavior of Surface-Treated Mg-based Alloys for Hydrogen Storage of Fuel Cell (연료전지의 수소저장용 마그네슘계 합금의 표면제어에 의한 전기화학적 수소화 거동 연구)

  • Kim, Ho-Sung;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.46-52
    • /
    • 2006
  • The effects of surface treatment on the hydrogen storage properties of a $Mg_2Ni$ alloy particle were investigated by the microvoltammetric technique, in which a carbon-filament microelectrode was manipulated to make electrical contact with the particle in a KOH aqueous solution. It was found that the hydrogen storage properties of $Mg_2Ni$ at room temperature were improved by the surface treatment with a nickel plating solution. The sodium salts(sodium phosphate and sodium dihydrogen citrate) contained in the nickel plating solution made the alloy form an amorphous-like state, resulting in an improved hydrogen charge/discharge capacity at room temperature as high as about 150[mAh/g] from the original value of 17[mAh/g]. Potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-8}{\sim}10^{-9}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process.

Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates (다이아몬드 배열 무전해 니켈 도금층/무산소동 기판의 열전도도 특성)

  • Jeong, Da-Woon;Kim, Song-Yi;Park, Kyoung-Tae;Seo, Seok-Jun;Kim, Taek Soo;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.134-137
    • /
    • 2015
  • The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and $50{\mu}m$ are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to $150^{\circ}C$ in all diamond size conditions. When the diamond particle size is increased from $15{\mu}m$ to $50{\mu}m$ (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

Calcined Condition and Characteristic of Cu-Ni-Zn Ferrite Powder Made by Thermal Decomposition of Organic Acid Salt (유기산염 열분해법으로 합성한 Cu-Ni-Zn 페라이트분말의 특성과 하소조건)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1995
  • In this study the calcined condition and characteristic of Cu-Ni-Zn ferrite powder were investigated. The Cu-Ni-Zn ferrite powder has been synthesized by the thermal decomposition of the organic acid salt. This process did not require a strict pH control and provided the uniform composition and fine powder with about 0.3 $\mu\textrm{m}$. The XRD diffraction pattern of this powder showed about 50% spinel phase. The optimum calcination was found to be done at $700^{\circ}C$ for one hour. After the calcination, the amount of spinel increased to 90%. The distribution of the particle size showed bimodal peaks, one was about 0.5 $\mu\textrm{m}$ and the other was about 20 $\mu\textrm{m}$. The large particles of 20 $\mu\textrm{m}$ were the agglomeration of fine Particles. The mean Particle size of the powder was about 0.4 $\mu\textrm{m}$. The powder was compacted under 100 MPa pressure and sintered at 1100~ $1250^{\circ}C$ for one hour in air. The density of ferrites specimen was a function of the sintering temperature. The higher the temperature, the denser the ferrite. The maximum relative density of the sintered ferrite was about 93% at $1250^{\circ}C$. The grain size of sintered specimen at $1200^{\circ}C$ was 5 $\mu\textrm{m}$ and homogeneous.

  • PDF

Synthesis of Carbon Nanotube and Optical Application (탄소나노튜브의 제조 및 광학적 응용 연구)

  • Joo, Young-Joon;So, Won-Wook;Kim, Heejoo;Chol, Ho-Suk;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

Dispersion of Li[Ni0.2Li0.2Mn0.6]O2 Powder by Surfactant for High-power Li-ion Cell

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1598-1602
    • /
    • 2009
  • The particle size of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode powder was controlled effectively by dispersion using lauric acid as a surfactant. The samples treated by lauric acid showed smaller particles of approximately half the original size compared to the particles of a pristine sample. A structural change due to the dispersion of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ powder was not detected. The rate performance of the Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode was improved by dispersion using lauric acid, which was likely due to the decrease of the particle size. In particular, a sample dispersed pristine powder using lauric acid (L2) presented a greatly enhanced discharge capacity and capacity retention at a high C rate. The discharge capacity of a pristine sample was only 133 m$Ahg^{-1}$ (3C rate) and 96 m$Ahg^{-1}$ (12C rate) at the tenth cycle. In contrast, the L2 electrode delivered higher discharge capacities of 160 m$Ahg^{-1}$ (3C rate) and 129 m$Ahg^{-1}$ (12C rate) at the tenth cycle. The capacity retention at a rate of 12C/2C was also enhanced from ~ 45% (pristine sample) to 57% (L2) by treatment with lauric acid.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method

  • Chae, Kwang Pyo;Choi, Won Oak;Lee, Jae-Gwang;Kang, Byung-Sub;Choi, Seung Han
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Nickel substituted manganese ferrites, $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$), were fabricated by sol-gel method. The effects of sintering and substitution on their crystallographic and magnetic properties were studied. X-ray diffractometry of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered above 523 K indicated a spinel structure; particles increased in size with hotter sintering. The M$\ddot{o}$ssbauer spectrum of this ferrite sintered at 523 K could be fitted as a single quadrupole doublet, indicative of a superparamagnetic phase. Sintering at 573 K led to spectrum fitted as the superposition of two Zeeman sextets and a single quadrupole doublet, indicating both ferrimagnetic and paramagnetic phase. Sintering at 673 K and at 773 K led to spectra fitted as two Zeeman sextets due to a ferrimagnetic phase. The saturation magnetization and the coercivity of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered at 773 K were 53.05 emu/g and 142.08 Oe. In $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$) ferrites, sintering of any composition at 773 K led to a single spinel structure. Increased Ni substitution decreased the ferrites' lattice constants and increased their particle sizes. The M$\ddot{o}$ssbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and the octahedral sites of the $Fe^{3+}$ ions. The variations of saturation magnetization and coercivity with changing Ni content could be explained using the changes of particle size.

Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer (열중량분석기에서 석탄과 산소공여입자의 반응 특성)

  • Ryu, Ho-Jung;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.213-222
    • /
    • 2011
  • To check adaptability of low ash coal(hyper coal) to chemical looping combustion, reaction characteristics of two coals (Roto and Hyper coal) with two oxygen carriers (NiO/bentonite, OCN703-1100) have been investigated in a thermogravimetric analyzer. Hyper coal represented low combustion rate and high ignition temperature, high volatile content and high devolatilization rate, and therefore, showed worse oxygen transfer during successive 10 cycle reduction-oxidation test than Roto coal. Finally we selected Roto coal as the candidate coal for chemical looping combustion. For Roto coal, OCN703-1100 particle showed better oxygen transfer than NiO/bentonite particle. During 10 cycle reduction oxidation test, change of the extent of oxidation (Wo) was negligible and we could conclude that both oxygen carriers have sufficient regeneration ability.

Geochemical Dispersion and Enrichment of Fluvial Sediments Depending on the Particla Size Distribution (입도분포에 따른 하상퇴적물의 지구화학적 분산 및 부화)

  • 이현구
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.247-260
    • /
    • 1999
  • Geochermical characteristics of the fluvial sediments deprnding on particle size distribution size were investigated in the respect of majir, minor and rare eath element chemisitry. Ratios of $Al_{2}O_{3}/Na_{2}O$ and $K_{2}O/Na_{2}O$ of the sediments show the homogeneous valus, and partly positive correlation with $SiO_{2}/Al_{2}O_{3}$, respecively. Characteristics of minor element ratios (V/Ni, Cr/V, Ni/Co and Zr/Hf)are within the lower and narrow range. Thesesuggested that sediment sources may be acidic to intermediate granitic rock, and may be explained by simple weathering and sedimentation. With increasing SiO2 contents, concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, CaO and MgO decreased, but those of $K_{2}O$ and $Na_{2}O$ increased, Concentrations of Ba, Be, Cs, Cu, Li, Ni, Sr, V and Zr show comparatively normal negative and some positive trends. Compared with the mean composition of granite, concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, MnO, CaO and MgO in the sediments of the study area were highly enriced. Among some minor and rare earth elements, concentrations of As, Cd, Cu, and V were enriched, but those of Be, Ce, Rb, Sc, Sr and Zn were depleted when compared with average composition of granite. By decreasing of particle size fractions, SiO2, Rb and Sr conterts decreased, but concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, CaO, MgO, $TiO_{2}$, MgO, $P_{2}O_{5}$, Be, Cu, Hf, Pb, V and Zr increased. From the correlations between particle size fractions and element concenreations, some elements of $Fe_{2}O_{3}$, CaO, MgO, $P_{2}O_{5}$, Cu, Ni, Zn and Zr showed typical trends in the secondary contramination sediments. These trends are typically shown under 100 mesh fractions. It indicates that the fraction of minus 100 mesh is the optimum size fraction for geochemical and environmental survey.

  • PDF

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell (고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Choi, Changkun;Joh, Han-Ik;Park, Jong Jin;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.