• Title/Summary/Keyword: Ni oxidation

Search Result 535, Processing Time 0.028 seconds

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

A Study on Toluene Oxidation Reaction Characteristics of Ni-Based Catalyst in Induction Heating System (유도가열 시스템을 이용한 Ni계 촉매의 톨루엔 산화 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.627-631
    • /
    • 2021
  • Research on induction heating catalyst system was conducted to solve problems of the existing catalyst system for removing volatile organic compounds. In the present study, three types of Ni-based commercial catalysts were employed, and induction heating reaction characteristics including the catalyst volume, composition, heat treatment atmosphere, and position in the coil were investigated. The composition and volume of the catalyst affected the exothermic and toluene oxidation performance in the induction heating system. In particular, the Fe-added catalyst showed high exothermic performance compared to that of other catalysts consisting of more than 99% Ni, but had low toluene oxidation performance. In addition, the heat treatment in an air atmosphere of the Ni-based catalyst drastically reduced the performance. In the induction heating system, the optimal condition for the catalyst was to be located in the center of the coil. The catalyst showed similar activities among seven repeated experiments under the optimal condition derived from this work.

Effects of Oxidation on the Order-disorder Transition in NiPt Alloy Nano Crystals

  • Seo, Ok-Gyun;Hwang, Jae-Seong;Song, Da-Hyeon;Lee, Ji-Yeon;Choe, Jeong-Won;Lee, Su-Ung;Gang, Hyeon-Cheol;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.253-253
    • /
    • 2012
  • The effects of oxidation on the order-disorder transition in NiPt bimetallic alloy crystal have been investigated using in-situ synchrotron x-ray scattering technique. The temperature dependence of the crystal structure and the order parameter were measured during in-situ heating and cooling under vacuum and oxygen environments. The order-disorder transition temperature of NiPt alloy crystals in vacuum was between $615^{\circ}C$ and $627^{\circ}C$. On the other hand under oxygen environment, the transition temperature decreases by about $31^{\circ}C$ after the oxidation. The change of the transition temperature can be explained by the formation of NiO crust on the surface of NiPt crystal, which alters the composition of the Ni and Pt atoms. Since the transition temperature depends sensitively on the Ni-Pt composition, the transition temperature changes as Ni atoms diffuse out to form NiO.

  • PDF

Partial Oxidation of Methane for Hydrogen Production over Co and Ni Catalysts (수소생산을 위한 메탄 부분산화용 코발트와 니켈촉매의 반응특성 연구)

  • Lee, Sang-Sik;Hong, Ju-Hwan;Ha, Ho-Jung;Kim, Byung-Kwan;Han, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.776-783
    • /
    • 2010
  • Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. The activities of these catalysts for the partial oxidation of methane was investigated at 1 atm and $CH_4/O_2=2.0$ in the temperature range of $450{\sim}650^{\circ}C$. The reaction activity of $Ni/Al_2O_3$ and $Co/Al_2O_3$ catalysts with different loading was investigated. And the beneficial effects of Ni addition to $Co/Al_2O_3$ and the promotional effects of Ce and La addition to $Ni/Al_2O_3$ and $Co/Al_2O_3$ were investigated. These catalysts were characterized by XRD and SEM/EDX. Comparing catalyst loadings, 10 wt% Co and 10 wt% Ni were found to be optimal at the experimental conditions. The 10 wt% $Ni/Al_2O_3$ and 10 wt% $Co/Al_2O_3$ catalysts in partial oxidation of methane showed $CH_4$ conversions and CO selectivity close to the thermodynamic equilibrium levels, but showed lower $H_2$ selectivity than equilibrium level. The addition of Ni to $Co/Al_2O_3$ exhibited higher $H_2$ selectivity but beneficial effect was not observed in the $CH_4$ conversion. Addition of Ce to $Co/Al_2O_3$ and addition of La to $Ni/Al_2O_3$ a improved the $CH_4$ conversion level and $H_2$ selectivity.

Effect of Pt on the High Temperature Stability of NiCoCrAlY or NiAl Bond Coat in the Thermal Barrier Coating System (NiCoCrAlY 및 NiAl bond coat를 사용한 Thermal Barrier Coating의 고온안정성에 미치는 Pt의 영향)

  • Ku Seongmo;Kim Gil Moo
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.375-381
    • /
    • 2005
  • High temperature oxidation behavior of thermal barrier coating (TBC) system (IN738 substrate + NiCoCrAlY or NiAl bond coat with or without Pt + yttria stabilized zirconia) prepared by air plasma spray (APS) process has been studied in order to understand the effect of Pt addition to bond coat on the stability of TBC system. Specimens were oxidized in thermal cycling and isothermal oxidation test at $1100^{\circ}C$. The Pt addition in TBC system with NiCoCrAlY bond coat showed a longer life time compared to that without addition of Pt. Pt addition to TBC system is believed to help the formation of more stable thermally grown oxide, $Al_2O_3$, at the TBC/bond coat interface, leading to a longer lifetime of TBC system.

Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts (Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal-support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.

Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode

  • Naeemy, A.;Ehsani, A.;Jafarian, M.;Moradi, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.88-94
    • /
    • 2015
  • In this study we investigated the electrocatalytic oxidation of saccharose on conductive polymer- Nickel oxide modified graphite electrodes based on the ability of anionic surfactants to form micelles in aqueous media. This NiO modified electrode showed higher electrocatalytic activity than Ni rode electrode in electrocatalytic oxidation of saccharose. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of saccharose was found in agreement with the values obtained from CV measurements.

A Study on the Oxidation of Carbon Monoxide for Exhaust of Car Engine by the $LaSrNiCoO_3$ Low Noble Metal Catalyst (저귀금속 $LaSrNiCoO_3$ 촉매에 의한 자동차 배기중의 일산화탄소의 산화반응에 관한 연구)

  • 이근배;이석희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.57-72
    • /
    • 1990
  • The oxidation of carbon monoxide on a catalyst, $LaSrNiCoO_3$ was investigatigated with a plug flow system. Kinetic quantities such as reaction-rate, reaction order and Arhenius-parameters at various reactor temperature from 200$^\circ$C to 300$^\circ$C were determined. Also, the optimum condition for the oxidation of carbon monoxide with this catalyst was determined and are as follows. Partial pressure of oxigen ; 428mmHg Partial pressure of carbon monoxide ; 332mmHg Mixed moral ratio of oxigen and Carbon monoxide ; 1.3 : 1 Total gas flow ; 224ml/min Reaction temperature ; 340$^\circ$C The reaction kinetic equation at the optimum condition, temperature range from 200$^\circ$C to 340$^\circ$C, are as follow. $$ $v = Ae^{6.5Kcal/RT} [CO]^{0.93 \sim 0.98} [O_2]^{0.42 \sim 0.50}$ $$ In addition to this, numerical calculation were performed to evaluate the mass and heat transfer effect on this system.

  • PDF