• 제목/요약/키워드: Ni coating

검색결과 562건 처리시간 0.028초

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

X선 흡수 분광법을 이용한 Ni-Zn 도금 강판에서의 Ni의 국부 구조에 관한 연구 (Local Structure Study of Ni in Ni-Zn Alloy Coating on Steel by X-ray Absorption Spectroscopy)

  • 이도형
    • 분석과학
    • /
    • 제11권3호
    • /
    • pp.202-205
    • /
    • 1998
  • X선 흡수 미세구조 분석 기술을 이용하여 Ni-Zn 도금 강판에서의 Ni 주위 국부구조를 연구하였다. 실험적으로 측정한 X선 흡수 미세구조 스펙트럼과 이론적인 스펙트럼을 비교 분석함으로서 Ni-Zn 원자간 거리와 Debye-Waller factor를 결정하였는데 이때 측정 온도의 범위는 80K로부터 300K까지이었다. 이 측정 온도 범위내에서는 Ni-Zn 원자간 거리의 온도에 따른 변화는 매우 작았으며 원자간 거리의 평균값은 $2.557{\AA}$이었다. 그리고 이러한 Ni-Zn 원자간 거리의 값을 순수한 Zn 금속 재료의 가장 가까운 이웃 원자간 거리의 값과 비교하여 볼 때 Ni-Zn 전기 도금층의 Ni 원자 주위에 약간의 contraction이 있는 것을 알 수 있었다. 한편, Debye-Waller factor는 온도에 따라 0.005~0.011 정도의 값을 가지며 비교적 큰 온도 의존도를 가지는 것으로 나타났다.

  • PDF

[Li,La]TiO3 코팅용액의 pH에 따른 Li[Ni0.35Co0.3Mn0.35]O2 양극의 전기화학적 특성 (PH Effect of [Li,La]TiO3 Coating Solution on Electrochemical Property of Li[Ni0.35Co0.3Mn0.35]O2 Cathode)

  • 정광희;김석범;박용준
    • 전기화학회지
    • /
    • 제14권2호
    • /
    • pp.77-82
    • /
    • 2011
  • [Li,La]$TiO_3$ 코팅용액의 pH를 조절하여 이에 따른 코팅된 $Li[Ni_{0.35}Co_{0.3}Mn_{0.35}]O_2$ 양극활물질의 전기화학적 특성을 관찰하였다. 산화물인 양극분말은 접촉하고 있는 용액의 pH에 따라 표면 전하를 띄게 되는데 양이온인 코팅물질을 균일하게 반응시키기 위해서는 적절한 pH 조절을 통해 양극분말 표면을 음전하 상태로 조절해 주는 것이 필요하다. SEM, TEM 분석을 통해 코팅용액의 pH에 따른 코팅층의 형상변화를 관찰하였으며 다양한 전류밀도로 충전과 방전을 실시하여 코팅용액의 pH에 따른 방전용량, 사이클 특성, 고율특성을 분석하였다. 임피던스잴 cyclic voltammogram 측정을 통해 코팅용액의 pH에 따른 코팅층의 내부저항 변화를 관찰하였으며 이것을 전기화학적 특성과 연관됨을 확인하였다.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과 (The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material)

  • 이혜진;윤수현;박보건;유제혁;김관수;김석범;박용준
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰 (Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings)

  • 고재황;이동복
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

니켈 코팅된 다이아몬드/금속 복합재의 저온분사 코팅특성 (Characteristics of Ni-coated diamond/Metal Composite Coatings by Cold Spray Deposition)

  • 정동진;김형준;이기안
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.550-557
    • /
    • 2009
  • In this study, bronze or SUS304 powders blended with 10 wt.% diamond particles were used to prepare metal/diamond composite materials deposited by cold spraying. The effects of matrix metal, diamond partical size, and the thickness of the Ni coating on the diamond were studied on Al 6061 substrate. The results showed that the hardness of the metal/diamond composite coating layers was higher than that of the same composite materials when using the sintering method. The fraction of diamond content in the coated layer increased when the metal matrix was soft. When the size of the diamond particles was reduced, the fraction of the diamond particles increased. In addition, in the case of diamond with a thicker Ni-coated layer, the fracturing of diamonds was mitigated in the composite coating layers.

Al-Si확산코팅에 따른 Ni기 초합금의 미세조직과 부식특성 (Microstructure and Corrosion Characteristics of Al-Si Diffusion Coated Ni Base Super alloy)

  • 안종천;김택수;윤동주;이경구
    • 한국표면공학회지
    • /
    • 제32권2호
    • /
    • pp.100-108
    • /
    • 1999
  • The microstructure and corrosion properties of Al-Si diffusion coated PWA1426 alloy have been investigated. Experimental variables are included temperatures of heat-treatment and coating thickness. The microstructure of coated layer and corrosion properties were analysed by SEM, EDS and hot corrosion test. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the NiAl to other $Ni_2Al_3$-based phase and secondly, the precipitation of Cr containing phases. Specimens heat treated at $1080^{\circ}C$ showed superior corrosion resistance to heat treated at $880^{\circ}C$. These increase in life was attributed to the transformation of NiAl and increased coating thickness of PWA1426 alloy.

  • PDF

다양한 코팅 방법에 따른 전조한 강 볼트의 내부식성 (2) (Corrosion Resistance of the Roll Formed Steel Bolts with the Various Types of Coating Methods (2))

  • 사바르;보보무로드;손요헌;김인수
    • 소성∙가공
    • /
    • 제28권2호
    • /
    • pp.77-82
    • /
    • 2019
  • Corrosion occurs well on surface of roll formed and Zn alloy subsequently electro-deposited on steel bolt under wet condition. In this study, variations in corrosion resistance were investigated through the measurement of polarization curves on steel bolts which were roll formed and subsequently coated with various types of coating methods. According to the measured polarization curve, Ni-P electroless deposits on roll formed steel increased the resistance to corrosion. The corrosion resistance of Zn alloy powder coated steel bolt was found to be better than that of Zn-Ni electro-deposited sample.