• Title/Summary/Keyword: Ni analysis

Search Result 1,745, Processing Time 0.028 seconds

Fabrication of Biaxially Textured Ni Tapes from Ni Powder Compact Rods (분말 성형체로부터 양축정렬 집합조직을 갖는 니켈 테이프의 제조)

  • 이동욱;지봉기;주진호;김찬중
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 $\mu$m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100$0^{\circ}C$ showed poor elongation and low fracture strength, while the Wi rods sintered above 100$0^{\circ}C$ revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100$0^{\circ}C$ are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 $\mu$m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8$^{\circ}$ to 10$^{\circ}$. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10$^{\circ}$, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.

Texture development in cold-roiled and heat-treated Ni tapes (냉간가공과 열처리한 Ni 테이프에서의 집합조직 발달)

  • 이동욱;지봉기;임준형;주진호;정충환;박순동;전병혁;홍계원;김찬중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.535-538
    • /
    • 2002
  • Cube-textured Ni substrates for YBCO coated conductors were fabricated by cold-rolling and annealing of Ni powder compacts. To establish the optimum sintering temperature, tensile test was performed for the Ni rod sintered at various temperatures. The Ni rods prepared at above 100$0^{\circ}C$ showed good mechanical properties due to the complete densification of the Ni rods. The Ni rods were rolled to final thickness of 100 ${\mu}{\textrm}{m}$ and then annealed at 100$0^{\circ}C$ for various annealing time for texture development. The texture analysis made by 2 $\theta$ scan and pole-figure showed that the cube texture was developed in a short time of a few munitues. The FWHM of in-plane and out of plane texture of the prepared Ni tapes was 8-10$^{\circ}$. The AEM surface roughness of the Ni tapes was as smooth as 3 nm.

  • PDF

Evolution of Cube Texture in the Nickel-Silver-Stainless steel Multi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1999
  • A Ni/Ag/Stainless steel 310S(SS310S) multi-layer sheet has been fabricated by a combination of vacuum brazing, cold rolling and texture annealing processes. After heat-treating the thin Ni/Ag/SS310S multi-layer sheet at $900^{\circ}C$ for 2h, development of (100)<001>cube texture on Ni surface was revealed by (111) pole figure. Quantitative chemical analysis was made by EPMA for the cross-section of the Ni/Ag/SS310S multi-layer sheet. EPMA results showed that Ag diffusion into the Ni layer, which may suppress the cube texture development, was negligible. A small amount of Cr atoms were detected in the Ni layer. It showed that Ag can be used as a chemical barrier of alloying element atoms in Ni layer for the Ni/Ag/SS310S multi-layer sheet and a strong cube texture was developed for the Ni layer in the Ni/Ag/SS310S multi-layer sheet.

  • PDF

Analysis of Giant Magnetoresistance Behavior of NiFeCo/Cu/NiFeCo/FeMn Valves (NiFeCo/Cu/NiFeCo/FeMn 스핀밸브 구조의 자기저항 거동 해석)

  • 배성태;김진영;민경익;신경호
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.112-116
    • /
    • 1996
  • 스퍼터링법으로 제조한 NiFeCo/Cu/NiFeCo/FeMn 스핀밸브 자성 다층막의 자기적 성질과 자기저항에 대해 연구하였다. Cu 사잇층 두께가 15 .angs. 인 경우 약 6%의 자기저항을 얻을 수 있었다. NiFeCo/FeMn에서 교환이방성 자계는 약 20 Oe 정도였는데, 이는 NiFe/FeMn 계 스핀밸브 구조에서 보고된 값(100 Oe 이상) 보다 현저히 작은 것이다. 3 mTorr에서 제조한 NiFeCo 박막은 약 10 Oe 정도의 큰 보자력을 보임으로써 비슷한 조건에서 제조한 NiFe 박막의 경우(약 2 Oe)보다 상당히 큰 값을 갖는 것으로 관찰되었다. 작은 교환이방성 자계와 큰 보자력으로 인해 음 .rarw. 양 방향과 양 .rarw. 음 방향의 자화거동에 있어서 비대칭적인 자기저항 이력곡선 거동을 보이는 것으로 나타났다.

  • PDF

Effect of Ni Content on Activated Sintering of Sub-micron Tungsten Powder Compact (초미립 텅스텐 분말을 이용한 활성소결에서 Ni 함량의 영향)

  • 원동묵;김영한;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.26-34
    • /
    • 2001
  • In the present study, the effect of Ni content on densification and grain growth in Ni doped W compacts was investigated by using the dilatometric analysis. The Ni-doped W compacts with various amount of Ni activator from 0.02 to 0.4 wt% were sintered in hydrogen atmosphere up to 140$0^{\circ}C$. As the amount of Ni and heating rates, the Ni-doped W compacts show a greatly different dilatometric behavior during the sintering. The sintered specimen was densified over 98% of theoretical density by adding only 0.06 wt% Wi in sub-micron W powder and the appropriate heating rate. It was also observed that the microstructure development strongly depended on the change of the Ni amount. In addition, it was found that the critical content of Ni showing large grain growth in microstructure was below 0.1 wt%.

  • PDF

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

Photovoltaic Efficiency Characteristics of DSSC with Electroplated Pt/Ni Counter Electrode (백금/니켈 전기 도금 상대전극을 사용한 염료 감응형 태양전지 광전 변환 효율 특성)

  • Hwang, Ki Seob;Doh, Seok Joo;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • We prepared a counter electrode by electroplating Ni as underlayer and Pt as plating layer on the FTO glass to increase the efficiency of dye-sensitized solar cell (DSSC). We found an excellent adhesion between Ni underlayer and FTO glass when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min on FTO glass. We observed Ni and Pt metal diffraction peaks by XRD analysis when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min, and Pt layer was electroplated at $5mA/cm^2$ for 1 min on the Ni underlayer. Photovoltaic performance and impedance analysis of DSSCs fabricated with this counter electrode shows the highest efficiency of 5.6% and the lowest resistance of 75 ohm.

Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl (LiCl 용융염에서 전해환원법을 통한 La0.5Nd0.5Ni5 합금 제조)

  • Lim, Jong Gil;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • The electrochemical behavior of $Nd_2O_3-La_2O_3-NiO$ mixed oxide including rare earth resources has been studied to synthesize $La_{0.5}Nd_{0.5}Ni_5$ alloy in a LiCl molten salt. The $Nd_2O_3-La_2O_3-NiO$ mixed oxide was converted to $NiNd_2O_4$ (spinel) and $LaNiO_3$ (perovskite) structures at a sintering temperature of $1100^{\circ}C$. The spinel and perovskite structures led a speed-up in the electrolytic reduction of the mixed oxide. Various reaction intermediates such as Ni, $NiLa_2O_4$ were observed during the electrochemical reduction by XRD analysis. A possible reaction route to $La_{0.5}Nd_{0.5}Ni_5$ in the LiCl molten salt was proposed based on the analysis result.

Polymer-Metal Complexes(II). Catalytic Activity of Some Ni(II)-Polyethyleneimine Complexes (고분자-금속착물 (제2보). 몇가지 Ni(II)-Polyethyleneimine 착물의 촉매활성도)

  • Jung Hag Park;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 1981
  • Two types of Ni(II)-polyethyleneimine (PEI) complexes, [Ni(PEI)]$Cl_2$ and [Ni(P-EI)$Cl_2$] were synthesized and their catalytic activities in the decomposition reaction of hydrogen peroxide were investigated. For the purpose of comparison, the corresponding monomeric complexes, $[Ni(en)_3]Cl_2$ and $[Ni(en)_2Cl_2$ were also prepared; it was observed that their activities increase in the following order; $0{\approx}[Ni(en)_3]Cl_2{\le}[Ni(en)_2Cl_2]<[Ni(PEI)]Cl_2<[Ni(PEI)Cl_2]$ On the basis of structural analysis by means of visible and infrared spectroscopy, the catalytic activiy of these Ni(II)-PEI complexes is assumed to depend on the bond strength between the ligand and the nickel ion.

  • PDF