• Title/Summary/Keyword: Ni alloys

Search Result 711, Processing Time 0.032 seconds

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

FLEXURE STRENGTH OF CAST-JOINED CONNECTOR WITH Ni-Cr-Be ALLOY (주조연결된 니켈-크롬-베릴리움 주조체의 굽힘강도에 관한 비교연구)

  • Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.6
    • /
    • pp.858-866
    • /
    • 1998
  • Soldering is the usual method used to correct an unstable fixed partial denture framework at patient's try-in; However, presoldering base metal alloys is technique-sensitve and results are unstable because it is difficult to maintain uniform heat distribution and to prevent oxidation of an alloy. A cast-joining technique has been developed by Weiss and Munyon for repair, correction and addition to base metal framework. This joining technique eliminates the problem with presoldering of non-precious frameworks. The object of this study was to 1) compare the relative flexure strength and the joining effectiveness of Ni-Cr-Be cast in two pieces and 'pre-soldered' versus in two pieces and 'cast-joined'. 2) determine the effect of increasing the number of retentive grooves on the face of the cast and 3) determine the effect of the relative matched position of groove patterns on flexure strength. The joining effectiveness can be expressed by the ratio of the mean flexure stress of soldered or cast-joined specimens to that of one-piece cast. Resin rods 3mm in diameter were used as pattern of specimens for one-piece casted, presoldered, and cast-joined groups. Cast-joined specimens had two different patterns of retentive grooves on the joined faces. Type A had cross-shaped grooves 1mm in depth. 0.6mm in width. Type B was the same except for the addition of one more retentive groove. In the experiment connecting cast-joined specimens, half of specimens with type A pattern had their patterns on the faces of paired casts matched with each other as mirror image. With the rest pairs, it was proceeded that one of paired casts turned 45 degrees so that the patterns crossed. Half of specimens with type B pattern also had the patterns matched as mirror image; However, here, one of paired casts turned 90 degrees with the other pairs. Retentive groove in this study lacked the intentional undercuts, in contrast with the suggestion of Weiss and Munyon. The specimens were subjected to four-point flexural loading in an Instron testing machine. The midspan flexural stress was calculated at the point of initial plastic strain as determined from a strip-chart recorder or at the point of failure if this occured at a lower stress level. Within the scope of this study, the following results were obtained. 1. The presoldered group showed flexural strength at least 2 times higher than the cast-joined groups. Its joining effectiveness was 82%. 2. In cast-joined groups, the flexural strength of joints with type B patterns exhibited 1.5 times that of joints with type A patterns. Joining effectivenesses were 38% for type B patterns, 25-26% for type A patterns. 3. The relative matched position of groove patterns did not have any significant effect on flexural strength of the cast-joined specimens with either type A patterns or type B patterns(p>.05).

  • PDF

Study on Material Characteristic of Modern Cultural Heritage Rickshaw (근·현대문화재 인력거 재질분석 연구)

  • Kim, Soo Chul;Choi, Jae Wan;Lee, Jee Eun
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • Modern cultural heritage were made with various materials. But there are no certain analysis for modern cultural heritage. Analysis on rickshaw from National Museum of Korean Contemporary History were carried out using P-XRF, species identification, paint film analysis, FT-IR and microscope observation. As a result Copper and Zinc were measured in metal parts. Nickel alloys were first used in the modern era for rickshaw. Wooden parts, Oak(Quercus spp.), bamboo(Phyllostachys spp.) and Hinoki cypress(Chamaecyparis spp.) were identified. Outer films were painted by 5 layers and inner films were painted by 3 layers. More simple painting process were performed on the inner part. Cotton and wool were identified by FT-IR. Also, cowhide were identified. Authenticity conservation and restoration could be carried out with the results.

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

A Study on Low Temperature Impact Strength of Inconel 625 for Petroleum Application by FCAW Weld (석유시추용 인코넬 625강의 FCAW용접에 의한 저온 충격강도에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;JUNG JAE-WOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.356-359
    • /
    • 2004
  • Above all Ni-alloys Inconel 625 is used widely in plate of welding structural materials such as turbine case, a combustor of liner. In general, weldability of Inconel 625 is not well because of poorly liquids of weld metal also it have a broken probability oj the welding crack. In case of FCAW weld process, it is not easy to develope of welding materials, because it is possible only fillet welding at view position of look down except for butt welding. But recently, though it is more used by FCAW process, owing to welding materials worked at the vertical position. the study for FCAW weld of Inconel 625 is actively not yet worked. In this study, the weldability and weld characteristics(mechanical characteristics, corrosive property) of Inconel 625 are considered in FC4W weld associated with the several shielding gases$80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$ in viewpoint of welding productivity. The results of impact test are follows; It was evaluated 70J at shielding gase of $100\%\;CO_2$, and obtained about 35J at the other shielding gases. If it was used for parts be required the impact value at the extremely low temperature, it is expected to have the advantage of using the $100\%\;CO_2$ shield gase than the others.

  • PDF

A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 - (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

A STUDY OF TENSILE BOND STRENGTH ACCORDING TO VARIED TREATMENT METHODS OF NONPRECIOUS METAL SURFACE AND RESIN CEMENTS (비귀금속합금 표면처리방법과 레진시멘트 종류가 접착인장강도에 미치는 영향에 관한 연구)

  • Yang, Tai-Jin;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.335-348
    • /
    • 1996
  • Retention is one of the major factors deciding the success and longevity of resin bonded restorations. The purpose of this study was to find a better resin cement and metal surface treatment method that would enhance the bonding strength. The bonding surfaces of Verabond, one of Ni-Cr-Be alloys, were treated with sandblasting(Group 1), sandblasting and EZ-Oxisor(Group 2), sandblasting and silicoating(Group 3), and than thay were bonded with All-Bond C & B, Panavia 21, Superbond C & B. The specimens were thermocycled, and the tensile bond strength was measured using the unive-rsal testing machine. Also the mode of bond failure was observed. The results were as folows. 1. The Superbond C & B showed the highest bond strength among the three resin cements and decreased in the order of Panavia 21, All-Bond C & B. There was significant differe-nce among them(p<0.05). 2. Group 3 showed the highest bond strength among the three metal surface treatment methods, and there was significant difference compared with Group 1 and Group 2(p<0.05). But there was no significant difference between Group 1 and Group 2. 3. Observing the mode of bond failure, Superbond C & B and Panavia 21 showed mostly cohesive failure in all groups. All-Bond C & B showed all types of bond failure in Group 3, but Group 1 and Group 2 showed only adhesive failure. 4. According to the results of this study, the silicoating method and 4-META containing resin cement were considered to be more acceptable for resin bonded restoration.

  • PDF

Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells (수소-알코올연료전지를 위한 금속-산화물 나노구조제어)

  • Park, Kyung-Won;Song, You-Jung;han, Sang-Beom;Lee, Jong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

The effect of thermocycling on the bonding of different restorative materials to access opening through porcelain fused to metal restorations

  • Al-Moaleem, Mohammed M.;Shah, Farhan Khalid;Khan, Nausheen Saied;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.186-189
    • /
    • 2011
  • PURPOSE. Porcelain fused to metal (PFM) crowns provide the best treatment option for teeth that have a large or defective restoration. More than 20% of teeth with PFM crowns or bridges require non-surgical root canal treatment (NSRCT). This may be due to the effect of restorative procedures and the possible leakage of bacteria and or their by-products, which leads to the demise of the tooth pulp. Thus, this study was planned to compare the ability of the restorative materials to seal perforated PFM specimens. MATERIALS AND METHODS. The study evaluates the ability of amalgam, composite or compomer restorative materials to close perforated PFM specimen's in-vitro. Ninety PFM specimens were constructed using Ni-Cr alloys and feldspathic porcelain, and then they were divided into 3 groups: amalgam (A), composite + Exite adhesive bond (B) and compomer + Syntac adhesive bond (C). All the PFM samples were embedded in an acrylic block to provide complete sealing of the hole from the bottom side. After the aging period, each group was further divided into 3 equal subgroups according to the thermocycling period (one week for 70 cycles, one month for 300 cycles and three months for 900 cycles). Each subgroup was put into containers containing dye (Pelikan INK), one maintained at $5^{\circ}C$ and the other at $55^{\circ}C$, each cycle for 30 sec time. The data obtained was analyzed by SPSS, 2006 using one way ANOVA test and student t-test and significant difference level at (P<.01). RESULTS. The depth of dye penetration was measured at the interfaces of PFM and filling materials using Co-ordinate Vernier Microscope. The lowest levels of the dye penetration for the three groups, as well as subgroups were during the first week. The values of dye leakage had significantly increased by time intervals in subgroups A and C. CONCLUSION. It was seen that amalgam showed higher leakage than composite while compomer showed the lowest level of leakage.