• 제목/요약/키워드: Ni Nanoparticles

검색결과 173건 처리시간 0.019초

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구 (Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery)

  • 주소영;강유빈;심현우;변석현;김용환;이찬기;김대근
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.60-67
    • /
    • 2019
  • 금속 폐기물로부터의 유가금속 회수는 관련 원료의 수입 혹은 안정적 원료 수급을 위해서 매우 중요하다. 특히 폐리튬이차전지(LIBs)로부터 회수가 가능한 금속(Li, Co, Ni, Mn 등)의 재사용뿐만 아니라 폐리튬이차전지의 재활용 연구가 필수적이다. 폐리튬이차전지에서 회수된 수산화리튬($LiOH{\cdot}xH_2O$)은 촉매, 이산화탄소 흡수제 및 양극재의 전구체로 재사용이 가능하다. 본 연구에서는 폐리튬이차전지로부터 회수된 탄산리튬 전구체를 사용하였으며, 침전공정을 이용한 선택적인 리튬 분리를 통해 고순도 수산화리튬 분말의 제조 및 최적화 연구를 진행하였다. 수산화리튬 제조 조건으로는 교반을 기반으로 반응온도 $90^{\circ}C$, 반응시간 3 시간, 탄산리튬과 수산화칼슘의 비율 1:1의 조건에서 수행하였으며, 순도 향상을 위해 2-step 수산화리튬 제조 공정을 추가적으로 진행하여 최종적으로 고순도의 수산화리튬 제일수화물($LiOH{\cdot}xH_2O$)을 제조하였다.