• Title/Summary/Keyword: Ni Catalyst

Search Result 509, Processing Time 0.027 seconds

Dry Reforming of Methane over Promoters Added Ni/HY Catalysts (조촉매가 담지된 Ni/HY 촉매상에서 메탄의 건식 개질 반응 연구)

  • Jeong, Heondo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Dry reforming of methane to synthesis gas was investigated over a series of Ni/HY catalysts promoted by Mg, Ca, K and Mn. These catalysts were characterized by XRD, BET, SEM, and TGA analyses before and after the reaction. Conversions and product yields were increased with increasing nickel loading up to 13 wt%. Among the catalysts tested in this work, the Ni-Mg/HY catalyst showed the highest carbon resistance and the most stable catalytic performance. It was revealed that the addition of Mg promoter reduced the nickel particle size and produced the highly dispersed nickel particles, and consequently, retarded the catalyst deactivation.

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas (불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가)

  • Kim, Kwangbae;Jin, Saera;Kim, Eunseok;Lim, Yesol;Lee, Hyunjun;Kim, Seonghoon;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

Microstructure of Raney Ni fabricated by Mechanochemical Process in Al-Ni System (Al-Ni계의 기계·화학적 방법으로 제조된 Raney Ni의 미세 구조 분석)

  • Choi, Jae-Woong;Lee, Chang-Rae;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • The Raney Ni catalyst was fabricated by mechanochemically process(MC process) in the Al-Ni system. Intermetallic compound obtained by mechanical alloying was leached in an alkaline solution. The characteristics of the mechanically alloyed powder and Raney Ni catalyst were analyzed by XRD, ICP-AES and EXAFS. In Al-50wt.%Ni, the metastable intermetallic compound phase close to AlNi phase was obtained by mechanical alloying unlike Al-Ni equilibrium phase diagram. The metastable intermetallic compound was transformed into $Al_3$$Ni_2$phase via the annealing at $750^{\circ}C$. The microstructure of Raney Ni fabricated by MC process was mainly bcc Ni including fcc Ni.

The growth and structure of CNTs dependent on the catalysts using thermal CVD

  • Lee, Tae-Jae;Lyu, Seung-Chul;Choi, Sang-Kyu;Lee, Cheol-Jin;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.670-673
    • /
    • 2002
  • We have investigated the catalyst effect on the growth and structure of CNTs using thermal chemical vapor deposition. The respective growth rate of CNTs shows that the performance of catalysts is in the order of nickel (Ni)>cobalt (Co)>iron (Fe). The average diameter of CNTs follows the sequence of Fe, Co, and Ni catalysts. The structure of CNTs reveals almost same morphology regardless of catalyst but the crystallinity of CNTs is largely dependent on catalyst. The crystallinity of CNTs synthesized from Fe catalyst is higher than that from Ni or Co catalyst. We demonstrate that the growth rate, the diameter, and the crystallinity of CNTs can be manipulated by selecting the catalysts.

  • PDF

Synthesis Gas Production via Partial Oxidation, CO2 Reforming, and Oxidative CO2 Reforming of CH4 over a Ni/Mg-Al Hydrotalcite-type Catalyst

  • Song, Hoon Sub;Kwon, Soon Jin;Epling, William S.;Croiset, Eric;Nam, Sung Chan;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.189-201
    • /
    • 2014
  • Partial oxidation, $CO_2$ reforming and the oxidative $CO_2$ reforming of $CH_4$ to produce synthesis gas over supported Ni hydrotalcite-type ($Ni_{0.5}Ca_{2.5}Al$ catalyst) catalysts were carried out and the effects of metal supports (i.e.; Mg and Ca) on the formation of a stable double-layer structure on the catalysts were evaluated. The $CH_4$ reforming stability was determined to be affected by the differences in the interaction strength between the active Ni ions and support metal ions. Only a Ni-Mg-Al composition produced a highly stable hydrotalcite-type double-layered structure; while the Ni-Ca-Al-type composition did not. Such structure provides excellent stability for the catalyst (-80% efficiency) as confirmed by the long-term $CO_2$ reforming test (-100 h), while the Ni-Ca-Al catalyst exhibited deactivation phases starting at the beginning of the reaction. The interaction strength between the active metal (Ni) and the supporting components (Mg and Al) was determined by temperature-programed reduction (TPR) analyses. The affinity was also confirmed by the TPR temperature because the Ni-Mg-Al catalyst required a higher temperature to reduce the Ni relative to the Ni-Ca-Al catalyst. The highest initial activity for synthesis gas production was observed for the $Ni_{0.5}Ca_{2.5}Al$ catalyst; however, this activity decreased quickly due to coke formation. The $Ni_{0.5}Ca_{2.5}Al$ catalyst exhibited a high reactivity and was more stable than the other catalysts because it had a higher resistance to coke formation.

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

The Study on Methane Reforming by CO2 and Steam for Manufacture of Synthesis Gas (합성가스 제조를 위한 CO2/수증기에 의한 메탄 개질반응 연구)

  • Cho, Wonihl;Lee, Seung-Ho;Mo, Yong-Gi;Sin, Donggeun;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2004
  • The methane reforming with $CO_2$ and steam for manufacture of synthesis gas over $Ni/ZrO_2$ catalyst was investigated. Mixed reforming carried out $CO_2$ dry reforming with $O_2$ and steam for development of DME process in pilot plant. To improve a catalyst deactivation by coke formation, the mixed reforming added carbon dioxide and steam as a oxidizer of the methane reforming was suggested. The result of experiments over commercial catalyst in $CO_2$ dry reforming has shown that the catalyst activity decrease rapidly after 20 hours. In case of $NiO-MgO/Al_2O_3$ catalyst, the deactivation of 20 percent after 30 hours was occurred. The activity of Ni/C catalyst still was not decreased dramatically after 100 hours. The effect of $H_2$ reforming with steam over $Ni/CO_2$ catalyst obtained the optimal conversion of methane and carbon dioxide, and could be produced synthesis gas at ratio of $H_2/CO$ under 1.5.