• Title/Summary/Keyword: Ni Catalyst

Search Result 514, Processing Time 0.02 seconds

Hydrogen adsorption properties of multi-walled carbon nanotubes (Multi-wall 탄소나노튜브의 수소 저장 특성)

  • Hwang, J.Y.;Lee, S.H.;Sim, K.S.;Kim, J.W.
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • Carbon nanotubes were prepared by catalytic decomposition of $CH_4$ using Ni-MgO catalyst at various temperatures. $H_2$ effect on crystallinity and morphology during the synthesis of carbon nanotubes was investigated. The crystallinity and morphology were characterized by SEM, TEM, XRD, TGA, and Raman spectroscopy. In addition, the hydrogen adsorption properties were evaluated by PCT measurement in a hydrogen pressure range between 1 and 120 bar. The optimal synthesis temperature of carbon nanotubes was elevated in the presence of $H_2$, although significant difference of carbon nanotube morphology was not found. It is believed that hydrogen served as self-cleaner mops the amorphous carbon on the catalyst surface. It is proved that the carbon nanotubes have multi-walled structure, short length with a outer diameter of 20 ~40nm and open tips after elimination of the catalyst. The amount of hydrogen adsorbed in carbon nanotubes is increased as the pressure of hydrogen is increased and reaches 1.3 wt % under the hydrogen pressure of 120 bar at room temperature.

  • PDF

Study on Characteristic of Reforming with Catalyst Using Plasmatron (플라즈마트론을 이용한 촉매 개질 특성 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2005
  • The purpose of this paper is to investigate the optimal condition of the Syngas production by reforming of fuel using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on fuel conversion, as well as hydrogen yield and $H_2$/CO ratio were studied. When the variations of $O_2$/fuel ratio, $H_2O$/fuel flow ratio and $CO_2$/fuel flow ratio were $0.94{\sim}1.48$, $4.3{\sim}10$ and $0.8{\sim}3.05$, respectively. Under the condition mentioned above, result of $H_2O$/fuel flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O$/fuel flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$. and $H_2$/CO ratio were $3.89{\sim}4.86$.

Effects of Catalyst Metal and Substrate Temperature on a Flame Synthesis of Carbon Nanomaterials (화염을 이용한 탄소나노튜브와 나노섬유의 합성에 미치는 촉매금속 및 기판온도의 영향)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of catalyst metal particles were investigated through $Fe(NO_3){_3}$ (ferric nitrate, nonahydrate) and $Ni(NO_3){_2}$ (nickel nitrate, hexahydrate). Carbon nanotubes and nanofibers with diameters of $30{\sim}70nm$ were found on the substrate for the case of using SUS304 substrates only and using them with metal nitrates. In case of using metal nitrates, due to the easy activation of the metal particles, the formation and growth of carbon nanomaterials were occurred in the lower temperature region than that of using SUS304 substrates only.

  • PDF

Kinetics of the Formation of Nickel-Phthalocyanine (Nickel-Phthalocyanine 생성의 반응속도론적 연구)

  • Bae, Kook-Jin;Hahn, Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 1972
  • A mechanism for the ring formation of nickel phthalocyanine (Ni-Pc) has been proposed based on chemical kinetics. The effect of the catalyst on the rate was examined, and ammonium molybdate has been found to be the most effective. The reaction order of the ring formation was determined to be of the 1st order over all, with only the concentration of urea affecting the rate of the ring formation. All the results including thermodynamic parameters support a conclusion that the rate-determining step seems to be the enolization of the urea-catalyst transition complex, followed by fast decomposition of the tautomeric enolized urea into ammonia and isocyanic acid. These intermediates then reacted with the phthalic anhydride to form imino and diimino-phthalimide, which condense to form nickel phthalocyanine in the presence of the nickel cation.

  • PDF

An experimental study on methanol decomposition catalysts for long distance-heat transportation (장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구)

  • 문승현;박성룡;윤형기;윤기준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

Synthesis Catalytic Application of Several$d^8Transition Metal Diphosphine Complexes, (MCl_2PP) (M = Ni^{2+}, Pd^{2+}, Pt^{2+}, Au^{3+} ; PP = diphosphines)$ (몇가지 $d^8$ 전이금속-디포스핀 착물 ($MCl_2PP$)의 합성과 촉매적 응용 (M = $Ni^{2+}$, $Pd^{2+}$, $Pt^{2+}$, $Au^{3+}$ ; PP = diphosphines))

  • Park Yu-Chul;Kim Kyung-Chae;Cho Young-Jae
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.685-691
    • /
    • 1992
  • The $d^8$-transition metal complexes containing diphosphine, $MCl_2PP$ were prepared by using $K_nMCl_m$ as starting materials, wherein M were Ni(II), Pd(II), Pt(II) and Au(III) and PP were bis(diphenylphosphino)methane(dppm), bis(diphenylphosphino)ethane(dppe), bis(diphenylphosphino)propane (dppp) and bis(diphenylphosphino)ethylene(dppety). The complexes were characterized by the spectral property $(^H-NMR$, $^{31}P-NMR$ and UV-Visible spectra) together with elemental analysis. The complexes were tested for the catalytic activity on the formation reactions of 3(2H)-furanone and cyclic carbonate. The only Ni(II)- and Pd(II)-diphosphine complexes displayed a good catalytic effects in the production of 3(2H)-furanone from 2-methyl-3-butyn-2-ol [reaction (1)]. But all the diphosphine complexes as catalyst were almost inactive towards cyclic carbonate production preaction [reaction (2)].

  • PDF

Characterization of NiO-TiO2 Modified with WO3 and Catalytic Activity for Acid Catalysis

  • Pae, Young-Il;Bae, Mu-Hee;Park, Won-Cheon;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1881-1888
    • /
    • 2004
  • A series of $NiO-TiO_2$/$WO_3$ catalysts was prepared by drying powdered $Ni(OH)_2-Ti(OH)_4$ with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Characterization of prepared catalysts was performed by using FTIR, Raman, XPS, XRD, and DSC and by measuring surface area. Upon the addition of tungsten oxide to titania up to 25 wt%, the specific surface area and acidity of catalysts increased in proportion to the tungsten oxide content due to the interaction between tungsten oxide and titania. Since the -$TiO_2$/stabilizes the tungsten oxide species, for the samples equal to or less than 25 wt%, tungsten oxide was well dispersed on the surface of titania, but for the samples containing above 25 wt%, the triclinic phase of $WO_3$ was observed at calcination temperature above 400 $^{\circ}C$. The catalytic activities of 10-NiO-$TiO_2$/$WO_3$ for 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method. NiO may attract reactants and enhance the local concentration of reactants near the acid sites, consequently showing the increased catalytic activities.

The Vertical Alignment of CNTs and Ni-tip Removal by Etching at ICPHFCVD (ICPHFCVD에 의한 탄소나노튜브의 수직 배향과 에칭을 이용한 Ni-tip의 제거)

  • 김광식;장건익;장호정;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a technique for the preparation of vertically grown CNTs by ICPHFCVD(inductively coupled plasma hot filament chemical vapor deposition) below $580^{\circ}C$. Purification of the CNTs(carbon nanotubes) using RE(radio frequency) plasma in a one step process, based on the different etching property of the Ni-tip, amorphous carbon and carbonaceous materials is also discussed. After purifying the grown materials. CNTs shown the multi walled and hollow typed structure. The typical outer and inner diameters or CNT were 50 nm and 25 nm, respectively. The graphitic wall was composed of 82 layers and the distance between wall and wall was 0.34 nm. From the results of TEM observation, the Ni catalyst at the tip of the carbon nanotubes were effectively removed by using a RF plasma etching, continuously.

  • PDF

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

Solar Steam Reforming of Methane utilizing Solar Simulator (Solar Simulator를 이용한 메탄의 수증기 개질 반응)

  • Do, Han-Bin;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.186-189
    • /
    • 2008
  • Solar simulator를 이용한 메탄의 수증기 개질은 집광된 태양에너지를 이용하기 위한 목적으로 수행되었다. 본 연구에서는 이와 같은 태양열에너지의 화학적 축열을 실시하기 위해 Solar Simulator를 이용한 메탄의 수증기 개질을 연구하였다. 태양열 모사 램프로 1.2kW급 Xenon-arc lamp를 사용하였다. 반응기는 앞면의 Quartz Window와 촉매지지층으로 구성되어 있다. 램프의 빛은 Quartz Window를 통하여 촉매층에 직접적으로 방사되고, 방사된 빛으로 촉매지지층에서 흡열반응이 일어난다.메탄의 수증기개질 반응은 고온에서 일어나기 때문에 촉매지지체를 열에 강한 SiC로 만들어진 Ceramic foam을 사용하였다. 이 촉매지지체에 촉매를 Wash-coat하여 사용하였으며, 담지된 촉매는 Ni을 활성성분으로 하는 ICI 46-6을 사용하였다. 반응기는 318 SUS 재질로 제작되었으며, 반응기 외부는 Insulation을 하여 열손실을 감소시켰다. 실험은 온도와 공간속도에 따른 Solar Steam reforming의 반응특성을 분석하였다.

  • PDF