• Title/Summary/Keyword: Ni/YSZ cermet

Search Result 34, Processing Time 0.017 seconds

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Influences of NiO Precursors on Microstructures and Conductivities of Ni/YSZ Anodes in SOFCs (NiO 전구체가 고체산화물 연료전지 Ni/YSZ 음극의 미세구조와 전기전도도에 미치는 영향)

  • Jeong, Youn-Ji;Lee, Hai-Won;Han, Kyoung-R.;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.402-407
    • /
    • 2006
  • NiO/YSZ(70 wt%NiO) composite powders were prepared by ball-milling of 8YSZ and NiO precursors, dried and then followed by calcination. The approach was to combine acidic $Ni(NO_3)_2{\cdot}6H_2O$ and basic $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$ via acid-base reaction as a mixed NiO precursor. Their effects were studied in the aspects of DSC, microstructure, porosity, and electrical conductivity. Ni/YSZ composite of 1N9C (1 mole NiO from the nitrate and 9 moles of NiO from the carbonate) was prepared by consolidation at $1400^{\circ}C$ for 3 h, and then followed by reduction at $1000^{\circ}C$ for 3 h under flowing of 6% $H_2/N_2$. It showed a homogeneous microstructure with ${\sim}20%$ porosity and 1880 S/cm at $1000^{\circ}C$.

Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion (압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Park, Gun-Woo;Seo, Doo-Won;Lee, Shi-Woo;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

Development of prepareation technology of materials for high temperature electrolysis (고온수전해용 전극물질 개발)

  • Seo, Min-Hye;Hong, Hyun-Seon;Kang, Kyoung-Hoon;Kim, Jong-Min;Lee, Sung-Koo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.61-64
    • /
    • 2007
  • Ni/YSZ ($Y_{2}O_{3}-stabilized$ $ZrO_{2}$), Cu/YSZ and CuO/YSZ composite powder for a cathode material in high temperature electrolysis (HTE) was synthesized by a mechanical alloying method with Ni (or Cu, CuO, Co) and YSZ powder. Microstructure of the composite for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. And conductivity of electrode was measured, Cu/YSZ cermet showed the higher electrical conductivity value than Ni/YSZ.

  • PDF

Microstructure and Electrical Properties of Single Cells Based on a Ni-YSZ Cermet Anode for IT-SOFCs (중.저온헝 SOFC를 위한 Ni-YSZ 연료극 지지체형 단전지 미세구조와 전기적 특성)

  • Park, Jae-Keun;Yang, Su-Yong;Lee, Tae-Hee;Oh, Je-Myung;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.823-828
    • /
    • 2006
  • One of the main issues of Solid Oxide Fuel Cells (SOFCs) is to reduce the operating temperature to $750^{\circ}C$ or less. It has advantages of improving the life of component parts and the long-term stability of a system, so the production cost could be decreased. In order to achieve that, the ohmic and polarization loss of a single cell should be minimized first. This paper presents.to fabricate anode-supported single cells with controlling microstructure as a function of particle size and volume of graphite and NiO-YSZ weight ratio. By means of optimizing the manufactural condition through microstructure analysis and performance evaluation, the single cell which had NiO-YSZ=6:4, graphite volume of 24% and graphite size of $75{\mu}m$ as the anode composition showed a distinguished power density of $510mW/cm^2$ at $650^{\circ}C$ and $810mW/cm^2$ at $700^{\circ}C$, respectively.

Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis (고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교)

  • Kim, Jong-Min;Shin, Seock-Jae;Woo, Sang-Kook;Kang, Kae-Myung;Hong, Hyun-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.384-388
    • /
    • 2008
  • Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.

The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer (Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용)

  • Kim, Hae-Won;Kim, Dong-Ju;Park, Seok-Joo;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Ryul;Yoon, Soon-Gil;Song, Rak-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.