• Title/Summary/Keyword: Ni/YSZ

Search Result 196, Processing Time 0.026 seconds

Mechanism for Ni/YSZ Nano-composite Anode from Spherical Core-shell Formation

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gu, Ja-Bin;Hwang, Hae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We studied a method of manufacturing an anode to restrict contraction in reducing NiO/YSZ by uniformly mixing. In order to mix Ni and YSZ, a sub-micron Ni core surface was coated at high-speed by a mixture of nano-sized YSZ and a spherical core-shell was subsequently formed. The micron-sized core-shell anode powder was then heat treated at $400{\sim}1,450^{\circ}C$ in an air atmosphere and Ni was extruded and synthesized in nano-size. Subsequently, when the nano-sized mixture of the anode was heat treated and maintained at a temperature of $1,450^{\circ}C$, the anode was manufactured, where Ni and YSZ were uniformly distributed with the nano-structure. According to the nano-sized anode powder synthesis process, Ni particles were oxidized at $400{\sim}500^{\circ}C$ and became spherical by surface tension. In the case of the spherical core Ni powder, the heat treatment temperature rose to $1,250^{\circ}C$ and then a gap between the internal and external pressures occurred due to thermal and tensile stresses. A crack subsequently appeared on the surface, and the heat treatment temperature was increased continuously to increase the pressure gap and then the core Ni extruded as a nano-sized powder, Ni and YSZ uniformly distributed. It was found that the anode of 50~200 nm with a consistent structure obtained in this study has electric conductivity that is approximately 3 times larger than that of a commercial anode.

  • PDF

Redox Behaviors of NiO/YSZ Anode Tube in Anode-Supported Flat Tubular Solid Oxide Fuel Cells (평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성)

  • Song, Rak-Hyun;Lee, Gil-Yong;Shin, Dong-Ryul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2006
  • The redox behaviors of anode-supported flat tube for solid oxide fuel cell has been studied. The mass change of the extruded NiO/YSZ anode flat tube during redox cycling was examined by thermogravimetric analysis(TGA). The result of TGA was shown a rapidly mass change in the range of $455\;-\;670^{\circ}C$ and the reoxidation of the NiO/YSZ anode was almost completed at $750^{\circ}C$. The starting temperature of reoxidation and the maximum temperature of oxidation rate decreased with increasing the reoxidation cycle, which is attributed to the increased porosity caused by volume change. Bending strengths of the NiO/YSZ anode after redox cycling were 96 - 80 MPa and the bending strength decreased slightly with increasing the redox cycle. On the other hand, the bending strength of the NiO/YSZ anode with electrolyte showed 130 MPa after first redox cycling but decreased rapidly with increasing the redox cycle. From the results of the bending test and the microstructure observation, we conclude that the crack initiation of the electrolyte-coated NiO/YSZ anode was induced easily at interface of electrolyte/anode tube and propagated cross the electrolyte.

Development of prepareation technology of materials for high temperature electrolysis (고온수전해용 전극물질 개발)

  • Seo, Min-Hye;Hong, Hyun-Seon;Kang, Kyoung-Hoon;Kim, Jong-Min;Lee, Sung-Koo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.61-64
    • /
    • 2007
  • Ni/YSZ ($Y_{2}O_{3}-stabilized$ $ZrO_{2}$), Cu/YSZ and CuO/YSZ composite powder for a cathode material in high temperature electrolysis (HTE) was synthesized by a mechanical alloying method with Ni (or Cu, CuO, Co) and YSZ powder. Microstructure of the composite for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. And conductivity of electrode was measured, Cu/YSZ cermet showed the higher electrical conductivity value than Ni/YSZ.

  • PDF

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells

  • Park, Eun Kyung;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.

Synthesis and Characteristic of Cu/YSZ Composite for High Temperature Electrolysis Cathode (고온수전해 수소극용 Cu/YSZ의 제조 및 특성)

  • Hong, Hyun-Seon;Kim, Jong-Min;Shin, Seock-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.101-104
    • /
    • 2007
  • 700 $^{\circ}C$이상의 온도에서 실시되는 고온수전해는 다가오는 수소경제시대의 주요한 수소제조기 술로 주목되고 있다. 이 연구에서는 Ni보다 전기전도도가 우수하고 가격이 저렴한 Cu를 사용하여 고온수 전해 수소극용 Cu/YSZ 복합체를 기계적합금법에 의해 제조하여 미세구조를 관찰하였고 Cu/YSZ를 수소전극으로 한 반전지를 제조하여 수조제조 실험을 실시하였다. Cu/YSZ 복합체는 Cu와 YSZ를 6:4(vol%)의 조성비로 유성밀을 사용하여 400 rpm으로 24시간 동안 실시하여 제조하였다. 고에너지 볼밀 후 500 nm이하의 나노크기의 복합체가 제조되었으며 Cu입자에 YSZ가 고르게 분포되어 있었다. 수은압입법으로 측정한 기공률은 70%이고 기공크기는 평균 0.5 ${\mu}m$으로 미세한 기공으로 이루어져 있었다. 제조된 Cu/YSZ 복합체를 수소전극으로 한 반전지를 제조하여 수소제조 실험을 실시한 결과 Ni/YSZ 전극보다 수소제조 성능이 우수한 것으로 나타났다. Cu의 높은 열팽창계수와 낮은 녹는점을 보완하면 우수한 고온수전해용 전극재료로 사용될 것으로 판단된다.

  • PDF

The Effect of Y at Ni-YSZ Catalysts for the Application to the Process of Methane Chemical-Looping Reforming (메탄을 이용한 매체 순환 개질 시스템을 위한 Ni-YSZ 촉매에서의 Y에 따른 촉매 반응 특성 연구)

  • KIM, HEESEON;JEON, YUKWON;HWANG, JUSOON;SONG, SOONHO;SHUL, YONG-GUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2015
  • Nickel based oxygen transfer materials supported on two different YSZs were tested to evaluate their performance in methane chemical-looping reforming. The oxygen transfer materials of YSZs were selected with different amount of the doped yittrium in the $ZrO_2$ structure. The yittrium of 8 mol% stabilized the zirconia oxide to a cubic structure compare to the 3 mol% doping, which is known to be a good for oxygen transfer. Various nickel amounts (16wt.%, 32wt.%, 48wt.%) were loaded on the selected supports. The nickel amount of 32% shows the optimized catalyst structure with good physical properties and reducibility from the XRD, BET and H2-TPR analysis, especially when the support of 8YSZ was used. From the methane chemical-looping reforming, hydrogen was produced by methane decomposition catalyzed by Ni on both YSZs. Comparing two YSZ supports of 3YSZ and 8YSZ during the cycling tests, the catalyst with 8YSZ (Ni 32%) exhibits not only the higher methane conversion and hydrogen production but also a faster reaction rate reaching to the stable point.

Fabrication of YSZ buffer layer for YBCO coated conductor by MOCVD method (MOCVD법에 의한 YBCO coated conductor용 YSZ 완충층 제작)

  • 선종원;김형섭;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.129-132
    • /
    • 2003
  • Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition (MOCVD) technique using single liquid source for the application of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (100) single crystal MgO substrate was used for searching deposition condition. Bi-axially oriented CeO$_2$ and NiO films were fabricated on {100}〈001〉 Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660~80$0^{\circ}C$) and oxygen flow rates (100~500 sccm) were changed to find the optimum deposition condition. The best (100) oriented YSZ film on MgO was obtained at 74$0^{\circ}C$ and $O_2$ flow rate of 300 sccm. For YSZ buffer layer with this deposition condition on CeO$_2$/Ni template, full width half maximum (FWHM) values of the in-plane and out-of-plane alignments were 10.6$^{\circ}$ and 9.8$^{\circ}$, respectively. The SEM image of YSZ film on CeO$_2$/Ni showed surface morphologies without microcrack.k.

  • PDF

High Temperature Oxidation Behavior of Plasma Sprayed $ZrO_2$ Having Functionally Gradient Thermal Barrier Coating

  • Park, Cha-Hwan;Lee, Won-Jae;Cho, Kyung-Mox;Park, Ik-Min
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • Plasma spraying technique was used to fabricate functionally graded coating (FGC) of NiCrAIY/YSZ 8wt%$Y_2O_3-ZrO_2$ on a Co-base superalloy (HAYNES 188) substrate. Six layers were coated on the substrate for building up compositionally graded architecture. Conventional thermal barrier coating (TBC) of NiCrAIY/SZ with sharp interface was also fabricated. As-coated FGC and TBC samples were exposed at the temperature of $1100^{\circ}C$ for 10, 50, 100 hours in air. Microstructural change of thermally exposed samples was examined. Pores and microcracks were formed in YSZ layer due to evolution of thermal internal stress at high temperature. The amount of pores and microcracks in YSZ layer were increased with increasing exposure time at high temperature. High temperature oxidation of coatings occurred mainly at the NiCrAIY/YSZ interface. In comparison with the case of TBC. the increased area of the NiCrAIY/YSZ interface in FGC is likely to attribute to forming the higher amount of oxides.