• Title/Summary/Keyword: Next Generation aircraft

Search Result 47, Processing Time 0.034 seconds

A Study on the effect of high-performance frequency hopping radio system to next-generation aircraft and improvement Anti-jamming communication (고성능 주파수 도약 공지통신 무전기의 차세대 항공기 적용과 항공기 항재밍 통신장비 개량에 따른 효과 연구)

  • Lee, Kwangyull;Yong, Taeho;Ahn, Seungbeom;An, Kyeongsoo;Jang, Indong;Han, Chulhee
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • In wartime conditions, the communication system of military aircraft is exposed to jamming, and it is necessary to mount communication equipment with high anti-jamming performance in order to perform air operations smoothly even in an environment where jamming attempts are made. In this paper, we check in detail the jamming and anti-jamming technology that can be applied to wireless communication, and the data disclosed on the difference in specifications of the next-generation anti-jamming radio with frequency hopping method and the improvement of anti-jamming performance according to these changes. It was briefly analyzed within the scope. In addition, the points to be considered when designing a new domestic aircraft and the possibility of installing the next-generation anti-jamming communication equipment on the currently operating aircraft were confirmed, and the tactical usefulness of improving the anti-jamming capability of the next-generation anti-jamming communication equipment was confirmed.

The Study on Performance Model of Open Rotor Engine for Next Generation Aircraft (차세대 항공기용 Open Rotor 엔진 성능 모델 연구)

  • Choi, Won;Kim, Ji-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.842-849
    • /
    • 2011
  • Open Rotor Engine is one of the several new technologies offering potential solution for the next generation aircraft. The coupling of ultra high bypass ratio and aerodynamically advanced fan blade design allow the open rotor engine to achieve and advantage in fuel consumption. The open rotor engine does have more thrust lapse than the general high bypass turbofan. The open rotor engine performance model was analyzed using a reference data based on the GE36 which was designed and tested data at which time a F404 turbojet was used as the core. The performance model of open rotor engine was verified by referred test data and was evaluated to be properly constructed, through the comparison of recent Next generation turboprop engine performance.

  • PDF

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Innovative Technologies for Tactical Combat Aircraft Powerplants (전술전투기용 추진기관의 혁신 기술)

  • Lee, Gi-Yeong;Gang, Su-Jun
    • The Journal of Aerospace Industry
    • /
    • s.45
    • /
    • pp.67-81
    • /
    • 1998
  • With projections into the future advanced Korea fighter development, the trend of tactical combat aircraft powerplants technique development over the past decade is presented. Ti was particularly focused on current innovative powerplants technologies such as lower density stronger materials and turbomachniery aerodynamics. With reviewing the status of aircraft powerplants which are currently underdeveloped next generation combat aircraft, it shows some core techniques that are needed for developing Korean type combat aircraft.

  • PDF

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

Next Generation Rotorcraft Technologies in USA and Europe (미국과 유럽의 차세대 회전익 기술 개발 현황)

  • Oh, Sejong;Kim, Sung Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.713-721
    • /
    • 2014
  • In Europe and USA, new programs called GRC(Green Rotorcraft) and SRW (Subsonic Rotary Wing program) respectively, have been currently underway for developing the next generation rotorcraft. The final goal is to develope fuel-efficient/environmental-friendly tilt-rotor civilian rotorcraft, which can partly replace short-range regional aircrafts. Also for safe operation, the new rotorcraft technology is cooperated with the new air transport management(ATM) system, called SESAR(Single European Sky ATM Research) and NextGen(Next Generation Air Transport System) in Europe and USA. In addition to achieve the final goal, the tilt-rotor aircraft, they are trying to improve the performance of conventional helicopters by adopting more efficient propulsion system, active rotor system, and reducing internal and external noise. Especially in GRC program of Europe, the environmental factors such as noise, fuel efficiency, reduction of emission gas(CO2, NOx), are focused for the new technologies.

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

Preliminary Hazard Analysis for ADS-B equipped Aircraft (ADS-B장착 항공기 예비위험분석)

  • Kim, Yong-Seok;Choi, Young-Jae;Shin, Dae-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.3
    • /
    • pp.58-63
    • /
    • 2008
  • ICAO has recommended ADS-B implementation that is considered as next generation surveillance system to meet the air traffic capability and aviation safety. However, safety verification for the new ADS-B technology should be carried out in advance. FAA performed a preliminary hazard analysis for ADS-B equipped aircraft through Capstone program in Alaska in order to reduce aviation accidents. The present study deals with ADS-B concept, FAA Capstone program and PHA for ADS-B equipped aircraft. We expect that this paper will be a valuable material to assess ADS-B risk when it is applied to the domestic environment.

  • PDF

ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management

  • Baek, Kwang-Yul;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.377-385
    • /
    • 2012
  • The Automatic Dependent Surveillance Broadcast (ADS-B) system is a key component of CNS/ATM recommended by the International Civil Aviation Organization (ICAO) as the next generation air traffic control system. ADS-B broadcasts identification, positional data, and operation information of an aircraft to other aircraft, ground vehicles and ground stations in the nearby region. This paper explores the ADS-B based trajectory prediction and the conflict detection algorithm. The multiple-model based trajectory prediction algorithm leads accurate predicted conflict probability at a future forecast time. We propose an efficient and accurate algorithm to calculate conflict probability based on approximation of the conflict zone by a set of blocks. The performance of proposed algorithms is demonstrated by a numerical simulation of two aircraft encounter scenarios.

A Review on Measurement and Applications of Situation Awareness for an Evaluation of Korea Next Generation Reactor Operator Performance (상황인식에 대한 측정 및 차세대 원자로 운전원 성능 평가에서의 활용방법에 관한 이론 연구)

  • Lee, Dhong-Ha;Lee, Hyun-Chul
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.751-758
    • /
    • 2000
  • Situation awareness is defined as a person's perception of the elements of the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future. Situation awareness is important in attempting to evaluate human behavior in operating complex systems such as aircraft, air traffic control, and nuclear power plant systems. From the literatures this study reviews the relationship between situation awareness and numerous individual, system and environmental factors, and also reviews the methodologies for the empirical measurement of situation awareness applicable to Korea Next Generation Reactor (KNGR) design project. Attention, working memory, workload, stress, system complexity, and automation are presented as critical factors limiting operator's situation awareness. Mental models and goal-directed behavior are hypothesized as important mechanisms overcoming these limits. This study summarized hypothesized guidelines for interface design to improve situation awareness of reactor operators. Some of the guidelines should be tested in the KNGR evaluation experiments in the future.

  • PDF