• 제목/요약/키워드: Next Generation Sequence

검색결과 172건 처리시간 0.025초

Effect of Next-Generation Exome Sequencing Depth for Discovery of Diagnostic Variants

  • Kim, Kyung;Seong, Moon-Woo;Chung, Won-Hyong;Park, Sung Sup;Leem, Sangseob;Park, Won;Kim, Jihyun;Lee, KiYoung;Park, Rae Woong;Kim, Namshin
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.31-39
    • /
    • 2015
  • Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a high depth of ${\sim}200{\times}$. We observed that most function-related diverse variants in the human exonic regions could be detected at a sequencing depth of $120{\times}$. Furthermore, investigation using a diagnostic gene set showed that the number of clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about $120{\times}$. Moreover, the phenomena were consistent across the breast cancer samples.

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

  • Park, Doori;Kim, Dongin;Jang, Green;Lim, Jongsung;Shin, Yun-Ji;Kim, Jina;Seo, Mi-Seong;Park, Su-Hyun;Kim, Ju-Kon;Kwon, Tae-Ho;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • 제13권3호
    • /
    • pp.81-85
    • /
    • 2015
  • Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb (${\sim}72{\times}coverage$) was sequenced with a $2{\times}150bp$ paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

Detection of planetary signals in extremely weak central perturbation microlensing events via next-generation ground-based surveys

  • Chung, Sun-Ju;Lee, Chung-Uk
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • Even though current microlensing follow-up observations focus on high-magnification events due to the high efficiency of planet detection, it is very difficult to do a confident detection of planets in high-magnification events with extremely weak central perturbations (i.e., the fractional deviation is ${\delta}{\leq}0.02$). For the confident detection of planets in the extremely weak central perturbation events, it is needed both the high cadence monitoring and the high photometric accuracy. A next-generation ground-based observation project, KMTNet (Korea Microlensing Telescope Network), satisfies both the conditions. Here we investigate how well planets in high-magnification events with extremely weak central perturbations are detected by KMTNet. First, we determine the probability of occurrence of events with ${\delta}{\leq}0.02$. From this, we find that for ${\leq}100M_E$ planets in the separation of $0.2AU{\leq}d{\leq}20AU$, events with ${\delta}{\leq}0.02$ occur with a frequency of more than 70%, in which d is the projected planet-star separation. Second, we estimate the efficiency of detecting planetary signals in the events with ${\delta}{\leq}0.02$ via KMTNet. We find that for main-sequence and subgiant source stars, ${\geq}1M_E$ planets can be detected more than 50% in a certain range that has the efficiency of ${\geq}10%$ and changes with the planet mass.

  • PDF

토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용 (Application of Amplicon Pyrosequencing in Soil Microbial Ecology)

  • 안재형;김병용;김대훈;송재경;원항연
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1073-1085
    • /
    • 2012
  • Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

맞춤의학 시대의 개인 유전체 서열의 해독과 스마트한 이용 (Individual Genome Sequences and Their Smart Application In Personalized Medicine)

  • 김동민;정해영;김일철;원용관
    • 스마트미디어저널
    • /
    • 제2권4호
    • /
    • pp.34-40
    • /
    • 2013
  • 다양하고 빠른 차세대 유전체 서열 분석기를 사용한 개인 유전체 분석은 생명과학 연구뿐만 아니라 질병의 진단과 치료를 포함하는 의학 분야까지 새로운 지평을 열고 있다. 저렴한 비용으로 읽혀진 개인 유전체 서열은 통합 과정을 거쳐 유전체 이상을 점검할 수 있고, 얻어진 서열 데이터는 유전자 변이성 연구, 유전체 발현 연구, 후성유전학적 연구, 유전체 주석화 등에 이용될 수 있다. 개인 유전체 데이터는 생물학적 연구 결과와 임상 연구 데이터를 연계하여 질환 위험도의 예측과 맞춤 치료에 이용할 수 있게 되었다. 개인 맞춤의학 시대에 전문적 데이터와 일반인 사용자의 간극을 메우기 위해 스마트 미디어 기기와 같은 적극적인 인터페이스의 개발이 시급하다.

  • PDF

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제39권1호
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

Characterization of the complete mitochondrial genome of Mauritian sardinella, Sardinella jussieu (Lacepède, 1803), collected in the Banten Bay, Indonesia

  • Sektiana, Sinar Pagi;Andriyono, Sapto;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • 제20권10호
    • /
    • pp.26.1-26.9
    • /
    • 2017
  • Fishes in genus Sardinella are small pelagic species, which plays an important role in marine ecosystem as the first consumer. Those species are also commercially important, whose total catch reaches 278,600 tons in 2011 in Indonesia, but their identification has been difficult for their morphological similarity. In this study, we reported Sardinella jussieu for the first time in Indonesian coastal area (Banten Bay, Indonesia, $6^{\circ}\;0^{\prime}\;50.00^{{\prime}{\prime}}\;S-106^{\circ}\;10^{\prime}\;21.00^{{\prime}{\prime}}\;E$). We were able to confirm the species by both its morphological characteristics including the black spot at dorsal fin origin, the dusky pigmentation at caudal fin, 31 total scute numbers, and DNA sequence identity in the GenBank database by the molecular analysis. Its total mitochondrial genome was determined by the combination of next-generation sequencing and typical PCR strategy. The total mitochondrial genome of Sardinella jussieu (16,695 bp) encoded 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs, and the putative control region. All protein-coding genes started with ATG and typical stop codon and ended with TAA or TAG except for ND4 in which AGA is used. Phylogenetic analyses of both COI region and full mitochondrial genome showed that S. jussieu is most closely related to Sardinella albella and Sardinella gibbosa

MAP: Mutation Arranger for Defining Phenotype-Related Single-Nucleotide Variant

  • Baek, In-Pyo;Jeong, Yong-Bok;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.289-292
    • /
    • 2014
  • Next-generation sequencing (NGS) is widely used to identify the causative mutations underlying diverse human diseases, including cancers, which can be useful for discovering the diagnostic and therapeutic targets. Currently, a number of single-nucleotide variant (SNV)-calling algorithms are available; however, there is no tool for visualizing the recurrent and phenotype-specific mutations for general researchers. In this study, in order to support defining the recurrent mutations or phenotype-specific mutations from NGS data of a group of cancers with diverse phenotypes, we aimed to develop a user-friendly tool, named mutation arranger for defining phenotype-related SNV (MAP). MAP is a user-friendly program with multiple functions that supports the determination of recurrent or phenotype-specific mutations and provides graphic illustration images to the users. Its operation environment, the Microsoft Windows environment, enables more researchers who cannot operate Linux to define clinically meaningful mutations with NGS data from cancer cohorts.