• Title/Summary/Keyword: Next Generation Sequence

Search Result 172, Processing Time 0.024 seconds

Application of Next Generation Sequencing to Investigate Microbiome in the Livestock Sector (Next Generation Sequencing을 통한 미생물 군집 분석의 축산분야 활용)

  • Kim, Minseok;Baek, Youlchang;Oh, Young Kyoon
    • Journal of Animal Environmental Science
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2015
  • The objective of this study was to review application of next-generation sequencing (NGS) to investigate microbiome in the livestock sector. Since the 16S rRNA gene is used as a phylogenetic marker, unculturable members of microbiome in nature or managed environments have been investigated using the NGS technique based on 16S rRNA genes. However, few NGS studies have been conducted to investigate microbiome in the livestock sector. The 16S rRNA gene sequences obtained from NGS are classified to microbial taxa against the 16S rRNA gene reference database such as RDP, Greengenes and Silva databases. The sequences also are clustered into species-level OTUs at 97% sequence similarity. Microbiome similarity among treatment groups is visualized using principal coordinates analysis, while microbiome shared among treatment groups is visualized using a venn diagram. The use of the NGS technique will contribute to elucidating roles of microbiome in the livestock sector.

Detection of hydin Gene Duplication in Personal Genome Sequence Data

  • Kim, Jong-Il;Ju, Young-Seok;Kim, Shee-Hyun;Hong, Dong-Wan;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.7 no.3
    • /
    • pp.159-162
    • /
    • 2009
  • Human personal genome sequencing can be done with high efficiency by aligning a huge number of short reads derived from various next generation sequencing (NGS) technologies to the reference genome sequence. One of the major obstacles is the incompleteness of human reference genome. We tried to analyze the effect of hidden gene duplication on the NGS data using the known example of hydin gene. Hydin2, a duplicated copy of hydin on chromosome 16q22, has been recently found to be localized to chromosome 1q21, and is not included in the current version of standard human genome reference. We found that all of eight personal genome data published so far do not contain hydin2, and there is large number of nsSNPs in hydin. The heterozygosity of those nsSNPs was significantly higher than expected. The sequence coverage depth in hydin gene was about two fold of average depth. We believe that these unique finding of hydin can be used as useful indicators to discover new hidden multiplication in human genome.

Wolbachia Sequence Typing in Butterflies Using Pyrosequencing

  • Choi, Sungmi;Shin, Su-Kyoung;Jeong, Gilsang;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1410-1416
    • /
    • 2015
  • Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods (한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.16-28
    • /
    • 2023
  • Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.

Application of next generation sequencing (NGS) system for whole-genome sequencing of porcine reproductive and respiratory syndrome virus (PRRSV) (돼지생식기호흡기증후군바이러스(PRRSV)의 전장 유전체 염기서열(whole-genome sequencing) 분석을 위한 차세대 염기서열 분석법의 활용)

  • Moon, Sung-Hyun;Khatun, Amina;Kim, Won-Il;Hossain, Md Mukter;Oh, Yeonsu;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In the present study, fast and robust methods for the next generation sequencing (NGS) were developed for analysis of PRRSV full genome sequences, which is a positive sensed RNA virus with a high degree of genetic variability among isolates. Two strains of PRRSVs (VR2332 and VR2332-R) which have been maintained in our laboratory were used to validate our methods and to compare with the sequence registered in GenBank (GenBank accession no. EF536003). The results suggested that both of strains had 100% coverage with the reference; the VR2332 had the coverage depth from minimum 3 to maximum 23,012, for the VR2332-R from minimum 3 to maximum 41,348, and 22,712 as an average depth. Genomic data produced from the massive sequencing capacities of the NGS have enabled the study of PRRSV at an unprecedented rate and details. Unlike conventional sequence methods which require the knowledge of conserved regions, the NGS allows de novo assembly of the full viral genomes. Therefore, our results suggested that these methods using the NGS massively facilitate the generation of more full genome PRRSV sequences locally as well as nationally in regard of saving time and cost.

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

Next Generation Sequencing and Bioinformatics (차세대 염기서열 분석기법과 생물정보학)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.357-367
    • /
    • 2015
  • With the ongoing development of next-generation sequencing (NGS) platforms and advancements in the latest bioinformatics tools at an unprecedented pace, the ultimate goal of sequencing the human genome for less than $1,000 can be feasible in the near future. The rapid technological advances in NGS have brought about increasing demands for statistical methods and bioinformatics tools for the analysis and management of NGS data. Even in the early stages of the commercial availability of NGS platforms, a large number of applications or tools already existed for analyzing, interpreting, and visualizing NGS data. However, the availability of this plethora of NGS data presents a significant challenge for storage, analyses, and data management. Intrinsically, the analysis of NGS data includes the alignment of sequence reads to a reference, base-calling, and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection, and genome browsing. While the NGS technologies have allowed a massive increase in available raw sequence data, a number of new informatics challenges and difficulties must be addressed to improve the current state and fulfill the promise of genome research. This review aims to provide an overview of major NGS technologies and bioinformatics tools for NGS data analyses.

Development of Simple Sequence Repeat Markers from Adenophora triphylla var. japonica (Regel) H. Hara using Next Generation Sequencing (차세대염기서열분석법을 이용한 잔대의 SSR 마커 개발)

  • Park, Ki Chan;Kim, Young Guk;Hwangbo, Kyeong;Gil, Jinsu;Chung, Hee;Park, Sin Gi;Hong, Chang Pyo;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.411-417
    • /
    • 2017
  • Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.

Perspectives of Integrative Cancer Genomics in Next Generation Sequencing Era

  • Kwon, So-Mee;Cho, Hyun-Woo;Choi, Ji-Hye;Jee, Byul-A;Jo, Yun-A;Woo, Hyun-Goo
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.69-73
    • /
    • 2012
  • The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research.