• Title/Summary/Keyword: Next Generation Science Standard(NGSS)

Search Result 4, Processing Time 0.018 seconds

Analysis of Science Educational Contents of Singapore, Canada and US Focused on the Integrated Concepts (통합개념을 중심으로 한 싱가포르, 캐나다와 미국의 과학교육과정 내용 요소 분석)

  • Lee, Yoonha;Yoon, Heojeong;Song, Joo-Yeon;Bang, Dami
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • The feasibility of integrated concepts as a key element in designing integrated science curriculum has been investigated by analysing science contents included in performance expectations stated at different grades. The science curriculum of Singapore and the state of Ontario in Canada, and next generation of science standard (NGSS) were selected. Each of them presents theme, fundamental concepts, and crosscutting concepts, which has the characteristics of integrated concepts proposed in the study. Analysis showed that theme, fundamental concepts, and crosscutting concepts were influenced by the characteristics of each curriculum. In addition, science contents related to integrated concepts at different grades varied with the nature of integrated concepts. Based on results, some suggestions were made. First, the total number of integrated concepts should be considered for designing integrated curriculum. Second, the nature of integrated concepts and science contents associated with the integrated concepts should be considered. The integrated concepts should be vast and deep enough in the meaning to contain various content knowledge of different science domains. Third, it should be considered that how the integrated concepts have to be presented at different grades.

Developing and Assessing a Learning Progression for the Ecosystem (생태계에 대한 학습발달과정의 개발과 평가)

  • Yeo, Chaeyeong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • There have been much efforts to reconstruct the science curriculum focusing on Disciplinary Core Ideas(DCI) in many countries such as America and Europe, the most practical effort has been to design a curriculum with learning progressions(LPs). LPs describe stepwise how students can systematically move toward the understanding of more sophisticated ideas or scientific activities and explain in succession the process of understanding the ideas while the students learn. In this study, a LP for ecosystems has been developed, and the developed LP is then evaluated accordingly. The Ecosystem is one of the DCI of the life science in Next Generation Science Standards(NGSS). The development process of the LP was set at step 4(Development, Assessment, Analysis, and Amendment), and developed through an iterative process of sequences. As a result of analyzing the developed LP, an assessment based on the LP provides reliable information to identifying student ability. This study proposes the development process of the LP and its methodological aspects to use Core Achievement Standards, Ordered Multiple-Choice items and the Rasch model. In addition, using the empirically proven LP suggests a way of strengthening curriculum linked to educational content, teaching methods and assessment. Utilizing the proposed development process in this study will be to present the standard into the direction of becoming part of the curriculum. Currently, the state of domestic research for the LP is still lacking. This study determined the development process of the LP and the need to conduct future research on the LPs.

International Comparison Study on Essential Concepts of Science Curriculum: Focus on the United States, Canada, Australia and England (과학과 교육과정의 핵심 개념 국제 비교 -미국, 캐나다, 호주, 영국을 중심으로-)

  • Kim, Jihyeon;Chung, Are Jun
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.215-223
    • /
    • 2017
  • This study aims to find an effective way to present essential science concepts in national science curriculum through international comparisons. Next Generation Science Standard (US), Ontario Science Curriculum (Canada), Australia Science Curriculum, and British/English Science Curriculum were selected for comparison. In science curriculum documents, these countries used terms such as 'Key ideas,' 'Big ideas,' 'Key concepts,' 'Disciplinary core ideas.' and 'Fundamental concepts' to present essential concepts of science. This study reviewed the characteristics of the meaning, the status, and the role of essential concepts country by country. The result shows essential concepts have been used with different meanings and statutes in each case. Furthermore, various roles were performed through essential concepts in order to organize their science curriculum. From these foreign nation's cases, this study proposes several ways to present essential science concepts based on results. First, interdisciplinary integrated concepts were needed to organize an integrated science curriculum. In science curriculum documents of the United States, Canada, Australia and England, two types of terms were used in order to structuralize an integrated science curriculum. Second, essential concepts should include concepts related with function and value as well as scientific knowledge. Third, essential concepts need to be presented in such a way as to show specific contexts. Therefore, selecting appropriate contents and structure are needed to be able to improve the way to present essential concepts in Korea's educational environment.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.