• Title/Summary/Keyword: Newtonian fluid

Search Result 307, Processing Time 0.028 seconds

Flow Simulation of Simulant Gel Propellant with $Al_2O_3$ Nano Particles in A U-Type Duct (U-자형 덕트에서의 $Al_2O_3$ 나노 입자를 포함한 모사 Gel 추진제의 유동 특성 수치해석)

  • Oh, Jeong-Su;Park, Ji-Hoon;Jang, Seok-Pil;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.377-382
    • /
    • 2010
  • The Present study uses non-Newtonian simulant gel propellant mixed by Water, Carbopol 941, and NaOH solution in order to analyze the gel propellant flow behavior. Rheological data have been measured and obtained prior to the analysis of flow characteristics where water-gel propellant as well as water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number were examined by numerical simulation of gel propellant in the U-shape duct flow. It is found that though gel-nano propellants have higher apparent viscosity, the critical Dean number did not showed notable difference with respect to the water-gel propellant. It is believe that this is due to the fact that the power law index of both propellants have close value, as was demonstrated by Fellouah et al.[1]

  • PDF

Production of Water/n-decane Emulsion Fuel and Evaluation of Rheological Stability (물/n-데칸 에멀젼 연료의 제조 및 유변학적 안정성 평가)

  • Kim, Hye Min
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • In this study, the production of proper emulsion fuel and the evaluation of its rheological stability in various experimental conditions were carried out. The W/O (water-in-oil) emulsion fuel was made using n-decane, pure water, and Span 80 was used as a surfactant. Increments of water volume ratio and fuel temperature were the factors, which boosted the phase separation of the emulsion fuel. Rheological characteristics for different water/oil volume ratio, temperature, and elapsed time after the fuel production were examined. As the water volume ratio in the fuel increased, the behavior of non-Newtonian fluid was observed. Viscosity declined as the fuel temperature increased due to the cohesion of water droplets in the fuel. The effect of elapsed time on viscosity was not severe for lower water ratio. However, gradual decrease of viscosity 3 hours after fuel production, in the case of ratio of 3:7, was clearly observed.

Development of Saengshik Beverage Products and Their Physico-chemical Properties (생식 음료 개발 및 이화학적 특성)

  • Lee, Ju-Yeon;Mok, Chulkyoon
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Saengshik beverage products were developed to improve the convenience in consumption, and thereby to expand the Saengshik market. Beverages were prepared from 3 commercial Saengshik products (ES, BS, SS) by mixing with water using a high shear blender. The physicochemical and sensory properties of the Saengshik beverage product were compared. The most acceptable beverage product was made of BS at 7.7% (w/w) level. The apparent viscosity of the beverages increased as the Saengshik levels increased. The beverages at lower Saengshik levels showed dilatant fluid characteristics, while they were Newtonian and pseudoplastic fluids at middle and high Saengshik levels, respectively. The beverage products also showed rheopectic type time-dependency at middle (5.7-9.7%) Saengshik levels, while they were time independent at low and high levels.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas (2상 유한체적모델 기반의 광역적 토석류 유동해석기법)

  • Jeong, Sangseom;Hong, Moonhyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.5-20
    • /
    • 2022
  • To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.

New Extracellular Biopolymer Produced by Methylobacterium organophilum from Methanol (Methylobacterium organophilum에 의한 메탄올로부터 생성되는 새로운 생물고분자)

  • Choi, Joon H.;Lee, Un T.;Kim, Jung H.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.397-402
    • /
    • 1989
  • A new extracellular biopolymer was produced by Methylobacterium organophilum from methanol as a sole carbon and energy source. The purified biopolymer was found to have a high molecular weight of about 4-5$\times$10$^6$ dalton and contained 66% (w/w) of carbohydrate but no polyhydro xybutyrate. Other organic constituents were consisted of protein, pyruvic acid, uronic acid, and acetic acid, whereas content of inorganic ash was 22%. Based on the chemical analysis of the biopolymer by TLC method, the polymer was consisted of glucose, galactose, and mannose with an approximate molar ratio of 2:3:2. The biopolymer solution showed a characteristics of pseudoplastic non-Newtonian fluid. The viscosity of the 1%-biopolymer solution was found to be 18,000 cp at a shear rate, 1 sec$^{-1}$, which was almost 10 times higher than that of a commercial xanthan gum.

  • PDF

Studies on Rheological Characterization of Barley ${\beta}-Glucan$ [mixed-linked $(1-3),(1-4)-{\beta}-D-Glucan$] (보리 ${\beta}-Glucan$ [mixed-linked $(1-3),(1-4)-{\beta}-D-Glucan$의 리올로지 특성)

  • Kim, Mi-Ok;Cha, Hee-Sook;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • Crude ${\beta}-glucan$ extracted from Barley was purified by stepwise enzyme treatment (Thermostable ${\alpha}-amylase$, amyloglucosidase, protease). The Intrinsic Viscosity $[{\eta}]$ of the purified ${\beta}-glucan$ was determined by Cannon Fenske Capillary Viscometer (size 50, Cannon Instruments, State, College pa.) at different pH (2, 4, 7, 9, 11) and various salt concentration (0.01 M, 0.03 M, 0.05 M, 0.07 M, 0.1 M and 0.2 M). The $[{\eta}]$ of purified ${\beta}-glucan$ was ranged from $0.997{\sim}2.290\;dl/g$. The $[{\eta}]$ of purified ${\beta}-glucan$ at both alkali, acid condition were lower than those at pH 7. However, the alkali condition of puified ${\beta}-glucan$ solution showed less $[{\eta}]$ than the acid condition of this solution. From 0 M to 0.2 M salt concentration, the $[{\eta}]$ of purified ${\beta}-glucan$ solution was decreased to 0.03 M then increased to 0.05 M NaCl and remained constant to 0.2 M NaCl. The chain stiffness parameter of purified ${\beta}-glucan$ was not affected by temperature from $15^{\circ}C$ to $65^{\circ}C$. The shear rates of various ${\beta}-glucan$ conditions were determined by Bohlin Rheometer (Lund, Sweden). The ${\beta}-glucan$ concentration of 1.0 g/dl and 2.0 g/dl behaved as Newtonian fluid. However, above the concentration of 3.0 g/dl ${\beta}-glucan$ solution, it showed thixotropic and psedoplastic characteristics. Barley ${\beta}-glucan$ appears a damping at 0.5 frequency for the 4.0 g/dl solution. Below 0.5 frequency, it appears a viscous behavior property and above 0.5 frequency, it appears a elastic behavior property.

  • PDF

Study on Temperature Characteristics of Friction Stir Welding Process by Numerical Analysis (수치해석을 활용한 마찰교반용접 공정의 온도 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.513-518
    • /
    • 2019
  • Friction Stir Welding is a welding technique for metal materials that utilizes the heat generated by friction between the material to be welded and the welding tool that rotates at high speed. In this study, a numerical analysis method was used to analyze the change in the internal temperature of the welded material during friction stir welding. As the welding target material, AZ31 magnesium alloy was applied and the welding phenomenon was considered a flow characteristic, in which a melting-pool was formed. FLUENT was used as the numerical tool to perform the flow analysis. For flow analysis of the welding process, the welding material was assumed to be a high viscosity Newtonian fluid, and the boundary condition of the welding tool and the material was considered to be the condition that friction and slippage occur simultaneously. Analyses were carried out for various rotational speeds and the translational moving speed of the welding tool as variables. The analysis results showed that the higher the rotational speed of the welding tool and the slower the welding tool movement speed, the higher the maximum temperature in the material increases. Moreover, the difference in the rotational speed of the welding tool has a greater effect on the temperature change.

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF

Viscosity and Wettability of Carboxymethylcellulose(CMC) solutions and Artificial Saliva (Carboxymethylcellulose(CMC) 용액과 인공 타액의 점도와 습윤성)

  • Park, Moon-Soo;Kim, Young-Jun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 2007
  • Destruction of oral soft and hard tissues and resulting problems seriously affect the life quality of xerostomic patients. Although artificial saliva is the only regimen for xerostomic patients with totally abolished salivary glands, currently available artificial salivas give restricted satisfaction to patients. The purpose of this study was to contribute to the development of ideal artificial saliva through comparing viscosity and wettability between CMC solutions and human saliva. Commercially-available CMC is dissolved in simulated salivary buffer (SSB) and distilled deionized water (DDW). Various properties of human whole saliva, human glandular saliva, and a CMC-based saliva substitutes known as Salivart and Moi-Stir were compared with those of CMC solutions. Viscosity was measured with a cone-and-plate digital viscometer at six different shear rates, while wettability on acrylic resin and Co-Cr alloy was determined by the contact angle. The obtained results were as follows: 1. The viscosity of CMC solutions was proportional to CMC concentration, with 0.5% CMC solution displaying similar viscosity to stimulated whole saliva. Where as a decrease in contact angle was found with increasing CMC concentration. 2. The viscosity of human saliva was found to be inversely proportional to shear rate, a non-Newtonian (pseudoplastic) trait of biological fluids. The mean viscosity values at various shear rates increased as follows: stimulated parotid saliva, stimulated whole saliva, unstimulated whole saliva, stimulated submandibular-sublingual saliva. 3. Contact angles of human saliva on the tested solid phases were inversely correlated with viscosity, namely decreasing in the order stimulated parotid saliva, stimulated whole saliva, unstimulated whole saliva, stimulated submandibular-sublingual saliva. 4. Boiled CMC dissolved in SSB (CMC-SSB) had a lower viscosity than CMC-SSB (P < 0.01 at shear rate of $90s^{-1}$). 5. For human saliva, contact angles on acrylic resin were significantly lower than those on Co-Cr alloy (P < 0.01). 6. Comparing CMC solutions with human saliva, the contact angles between acrylic resin and human saliva solutions were significantly lower than those between acrylic resin and CMC solutions, including Salivart and Moi-Stir (P <0.01). The effectiveness of CMC solutions in terms of their rheological properties was objectively confirmed, indicating a vital role for CMC in the development of effective salivary substitutes.