• Title/Summary/Keyword: Newtonian flow

Search Result 328, Processing Time 0.028 seconds

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

Flow analysis of non-isothermal three dimensional filling phase in injection molding and its application (사출성형에서의 비등온, 3차원 유동해서과 그 응용)

  • 김대업;정근섭;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 1993
  • 사출성형 문제는 열전달과 유체유동이 복합된 문제라고 할수 있다. 사출성형 공정은 충진(filling), 보압(packing) 및 냉각과정(cooling phase)으로 이루어 진다. 충진과정은 높은 점성의 Non-Newtonian유체가 몰드내의 캐버티로 사출됨으로써 이루어지며 플라스틱의 점성도는 플라스틱의 온도 및 유동속도와 관련이 크며 이 flow-rate는 점도와 더불어 변화한다. CAE 유동해석 프로그램은 유체의 흐름과 열전달을 이용하여 충진과정을 이해하는데 이용되고 있다. 본 고에서는 사출성형 과정 중 충진과정에 대한 컴퓨터 시뮬레이션과 그 적용사례에 대하여 살펴본다.

  • PDF

Rheological Behaviors of Mesophase Pitches Prepared from Coal Tar Pitch as Carbon Fiber Precursor (탄소섬유 원재료로서 콜타르로부터 제조된 메조페이스 핏치의 유변학적 거동)

  • Lee, Young-Seak;Kim, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.690-695
    • /
    • 1999
  • An experimental study for mesophase pitch prepared from coal tar pitch has been carried out to clarify the rheological behaviors in the molten state. The apparent viscosity, shear stress, shear rate, Qunoline insoluble(QI), and softening point(SP) change were investigated especially. The conditions to increase mesophase content during polymerization were heat treatment time of 5 hrs, catalyst concentration of 3% and reaction temperature of $420^{\circ}C$. Apparent viscosity change with increase in temperature of pitches was different according to the heat treatment conditions and apparent viscosity increased with increasing heat treatment temperature, heat treatment time, contents of mesophase, on the contrary, fluidity is decreased. Rheological behavior of molten mesophase pitches at about $270^{\circ}C$ showed Newtonian behavior below $375^{\circ}C$ and non-Newtonian behavior above $270^{\circ}C$, the flow behavior was analyzed with Casson model.

  • PDF

Analysis of Ink Transfer Mechanism in Gravure-offset Printing Process (그라비아 옵셋 프린팅 공정에서의 잉크전이 메커니즘 해석 연구)

  • Lee, Seung-Hyun;Nam, Ki-Sang;Lee, Taik-Min;Yoon, Deok-Kyun;Jo, Jeong-Dai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1146-1152
    • /
    • 2011
  • Ink transfer process is very important to determine quality of printed pattern, therefore its mechanism should be understood to control printing quality. Although there have been many attempts to understand ink transfer mechanism by numerical simulation and experimental studies, their model was too much simple to model realistic printing process and our understanding is not enough yet. In this paper we designed ink transfer visualization system to present flow visualization of ink transfer process for gravure offset printing. We considered rotational effect of blanket roll which is related with printing speed and used non-Newtonian fluid as working fluid such as Ag paste. For printing unit, cantilever-type blanket roll is used for convenient visualization of ink transfer. Serial images were captured continuously by using high-speed CMOS camera and long range microscope. We investigated the effects of various design parameters such as printing speed and pattern angle on the ink transfer process. We found more stretched ink filament for non-Newtonian fluid than Newtonian fluid. As increasing printing speed, length of stretched ink filament and height of break-up point are also increased. We also compared ink transfer process between CD and MD pattern and its relationship with ink transfer mechanism.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Properties of Purple-Fleshed Sweet Potato Antocyanin Pigment Solutions (자색고구마 Antocyanin 색소 추출액의 유동특성)

  • 이정주;임종환
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 2001
  • Flow properties of the concentrated pigment solutions extracted from purple-fleshed sweet potatoes were determined using a cone and plate rotational viscometer for soluble solids concentration range of 25 to 65% at temperature range of 20 to 60 $^{\circ}C$. The purple-fleshed sweet potato pigment solutions exhibited Newtonian behavior. Temperature dependency for the viscosity of the solution followed the Arhenius relationship with activation energy values between 14.23 and 43.00 kJ/mol, which increased linearly with soluble solids concentration. A relationship between viscosity, temperature and soluble solids concentration was investigated. At the same temperature, the viscosity of the concentrated pigment solutions increased exponentially as the concentration increased with higher degree of such phenomena at lower temperatures.

  • PDF

Rheology and pipeline transportation of dense fly ash-water slurry

  • Usui, Hiromoto;Li, Lei;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.47-54
    • /
    • 2001
  • Prediction of the maximum packing volume fraction with non-spherical particles has been one of the important problems in powder technology. The sphericity of fly ash particles depending on the particle diameter was measured by means of a CCD image processing instrument. An algorithm to predict the maximum packing volume fraction with non-spherical particles is proposed. The maximum packing volume fraction is used to predict the slurry viscosity under well dispersed conditions. For this purpose, Simha's cell model is applied for concentrated slurry with wide particle size distribution. Also, Usui's model developed for aggregative slurries is applied to predict the non-Newtonian viscosity of dense fly ash - water slurry. It is certified that the maximum packing volume fraction for non-spherical particles can be successfully used to predict slurry viscosity. The pressure drop in a pipe flow is predicted by using the non-Newtonian viscosity of dense fly ash-water slurry obtained by the present model. The predicted relationship between pressure drop and flow rate results in a good agreement with the experimented data obtained for a test rig with 50 mm inner diameter tube. Base on the design procedure proposed in this study, a feasibility study of fly ash hydraulic transportation system from a coal-fired power station to a controlled deposit site is carried out to give a future prospect of inexpensive fly ash transportation technology.

  • PDF

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Non-biopolymeric Solutions (II)

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.332-335
    • /
    • 1987
  • This paper is a continuation of our previous $paper,^1$ and deals with Eq.(1) (see the text), which was theoretically derived in the $paper,^1$$ [{\eta}]^f\; and\; [{\eta}]^0$ is the intrinsic viscosity at stress f and f = O, respectively. Equation (1) predicts how $[{{\eta}}]^f / [{\eta}]^0$ changes with stress f, relaxation time ${\beta}_2$ of flow unit 2 and a constant $c_2$ related with the elasticity of molecular spring of flow unit 2. In this paper, Eq.(1) is applied to a biopolymer, e.g., poly (${\gamma}$-benzyl L-glutamate), and nonbiopolymers, e.g., polyisobutylene, polystyrene, polydimethylsiloxane and cellulose triacetate. It was found that the $c_2$ factor is zero for non-biopolymers while $c_2{\neq}0$ for biopolymers as found $previously.^1$ Because of the non-Newtonian nature of the solutions, the ratio $[{{\eta}}]^f / [{\eta}]^0$ drops from its unity with increasing f. We found that the smaller the ${\beta}_2,$ the larger the $f_c$ at which the viscosity ratio drops from the unity, vice versa.

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

High Temperature Deformation Behavior and Formability of Zr-Cu-Al-Ni Bulk Metallic Glass (Zr 계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.123-126
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$ (at. %) bulk metallic glass (BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure thru X-ray diffraction (XRD) and differential scanning calorimetry (DSC). A series of compression tests has consequently been performed in supercooled liquid temperature region to investigate the high temperature deformation behavior. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

  • PDF