• Title/Summary/Keyword: Newtonian Conditions

Search Result 81, Processing Time 0.024 seconds

The Effect of Oil Rheology on Film Thickness in Engine Journal Bearing (윤활유의 유동특성이 기관 저어널 베어링의 유막두께에 미치는 영향)

  • 이동호;장병주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • Effect of Newtonian and non-Newtonian oils on minimum ol film thickness in engine journal bearing were investigated at various oil viscosities. The influence of oil viscosity and engine operating conditions on minimum oil film thickness of main bearing and con-rod bearing was examined. Minimum oil film thickness for Newtonian oils increased uniformly with kinematic viscosity. But the correlation between kinematic viscosity and minimum oil film thickness was very poor for non-Newtonian oils. According to the straight-line regression analysis for non-Newtonian oils, high temperature high shear viscosity at 1 $1{\times}10^6Sec^{-1}$, $150^{\circ}C$ increase the coefficient of determination from 0.41 to 0.77. Con-rod bearing showed better correlation between minimum oil film thickness and engine operating conditions than main bearing.

  • PDF

A Study on Spring Back in Sheet Forming of Amorphous Alloys (아몰퍼스 판재 성형의 스프링 백에 관한 연구)

  • Yoon S.H.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes (이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

  • PDF

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models (Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF

Deformation Behavior of Bulk Amorphous Alloys During Hot Forming Process (열간성형공정에서 벌크 아몰퍼스 소재의 변형거동)

  • Lee Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.696-703
    • /
    • 2004
  • The purpose of this study is to examine the bulk/sheet forming characteristics of bulk amorphous alloys in the super cooled liquid state. Recently it is reported that amorphous alloys exhibit stress overshoot/undershoot and non-Newtonian behaviors even in the super cooled liquid state. The stress-strain curves with the temperature-dependences as well as strain-rate dependence of Newtonian/non-Newtonian viscosities of amorphous alloys are obtained based on the previous experimental works. Then, those curves are directly used in the thermo-mechanical finite element analyses. Upsetting and deep drawing of amorphous alloys are simulated to examine the effects of process parameters such as friction coefficient, forming speed and temperature. It could be concluded that the superior formability of an amorphous alloy can be obtained by taking the proper forming conditions.

Thixotropic Properties of Polyacrylamide Hydrogels with Various Synthetic Conditions (합성조건에 따른 Polyacrylamide 수화 겔의 흐름변성 성질)

  • Kim, Nam-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.447-453
    • /
    • 2006
  • of synthetic conditions and water content on rheological properties of polyacrylamide hydrogels were studied. The non-Newtonian flow curves of polyacrylamide hydrogels were obtained by using a cone-plate rheometer. The rheological parameters were obtained by applying non-Newtonian equation to the flow curves for polyacrylamide hydrogels. The polyacrylamide hydrogels are shear thinning under increasing shear rate modes which result in thixotropic behavior. These flow properties are controlled by the characteristics of flow units and the interaction among the flow segments.

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid;Hayat, Tasawar;Shehzad, Sabir A.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1636-1644
    • /
    • 2017
  • The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.