• 제목/요약/키워드: Newton-method

검색결과 1,017건 처리시간 0.022초

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A CLASS OF QUADRATIC MATRIX EQUATIONS

  • Kim, Hyun-Min
    • 호남수학학술지
    • /
    • 제30권2호
    • /
    • pp.399-409
    • /
    • 2008
  • We consider the most generalized quadratic matrix equation, Q(X) = $A_7XA_6XA_5+A_4XA_3+A_2XA_1+A_0=0$, where X is m ${\times}$ n, $A_7$, $A_4$ and $A_2$ are p ${\times}$ m, $A_6$ is n ${\times}$ m, $A_5$, $A_3$ and $A_l$ are n ${\times}$ q and $A_0$ is p ${\times}$ q matrices with complex elements. The convergence of Newton's method for solving some different types of quadratic matrix equations are considered and we show that the elementwise minimal positive solvents can be found by Newton's method with the zero starting matrices. We finally give numerical results.

태양광발전 시스템의 효율 개선을 위한 Newton Method MPPT제어 및 소프트 스위칭 컨버터 시뮬레이션 (Newton Method MPPT Control and Soft Switching Converter Simulation for Improving the Efficiency of PV System)

  • 장인혁;이강연;최연옥;조금배
    • 전기학회논문지P
    • /
    • 제60권4호
    • /
    • pp.246-252
    • /
    • 2011
  • In this paper proposes the soft-switching boost converter and MPPT control for improving the efficiency of PV system. The proposed converter designed H-bridge auxiliary resonant circuit. By this circuit, all of the switching devices perform the soft switching under the zero voltage and zero current condition. Therefore the periodic switching losses can be decreased at turn on, off. The soft switching boost converter designs for 1.5[kW] solar module of the power conversion. Thus, this soft switching boost converter is simulated by MATLAB simulation using Newton-Method algorithm. As a result, Proposed Soft Switching Converter compared to a typical boost converter switching loss was reduced about 61%. And the overall system efficiency was verified to increase about 3.3%.

Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석 (Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method)

  • 최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

CONVERGENCE OF THE NEWTON'S METHOD FOR AN OPTIMAL CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Kim, Sang-Dong;Lee, Hyung-Chun
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.1079-1092
    • /
    • 2011
  • We consider the Newton's method for an direct solver of the optimal control problems of the Navier-Stokes equations. We show that the finite element solutions of the optimal control problem for Stoke equations may be chosen as the initial guess for the quadratic convergence of Newton's algorithm applied to the optimal control problem for the Navier-Stokes equations provided there are sufficiently small mesh size h and the moderate Reynold's number.

Piecewise Regression Model for Solenoid Embedded Inductors Based on the Quasi-newton Method

  • Ko, Young-Don;Kim, Kil-Han;Yun, Il-Gu;Lee, Kyu-Bok;Kim, Jong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.256-261
    • /
    • 2005
  • This paper presents that the modeling to predict the characteristics with respect to the performance of solenoid embedded inductors manufactured by LTCC process via the nonlinear regression model based on the quasi-Newton method. In order to reduce the runs, the design of experiments (DOE) was used to generate the design space. The nonlinear process models were constructed by the piecewise regression model based on the quasi-Newton method for estimating the model coefficient with the break point on the statistical confidence intervals. Those models were verified by the model accuracy checking based on the assumption statistically.

Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한 개방형 시계열 데이터 예측엔진 구현에 관한 연구 (Implementation of an Open Prediction Engine for Time-Series Data Using Levinson-Durbin Algorithm and Newton-Raphson Method)

  • 구진모;홍태화;김학배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2968-2970
    • /
    • 2000
  • 시계열(time series)이란 한 사상 또는 여러 사상에 대하여 시간의 흐름에 따라 일정한 간격으로 이들을 관측하여 기록한 자료를 말한다. 이러한 시계열은 어떠한 경제현상이나 자연현상에 관한 시간적 변화를 나타내는 역사적 계열(historical series)이므로 어느 한 시점에서 관측된 시계열자료는 그 이전까지의 자료들에 주로 의존하게 된다. 따라서 시계열분석을 통한 예측에서는 과거의 자료들을 분석하여 법칙성을 발견해서 이를 모형화하여 추정하고. 이 추정된 모형을 사용하여 미래에 관측될 값들을 예측하게 된다. 본 연구에서는 ARMA (p, q)모형 (autoregressive moving-average model)을 이용하여 시계열 데이터를 분석하며 계수의 추정에는 Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한다.

  • PDF

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION

  • Meng, Jie;Lee, Hyun-Jung;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제32권1호
    • /
    • pp.13-25
    • /
    • 2016
  • We consider the nonlinear matrix equation $X^p+AX^qB+CXD+E=0$, where p and q are positive integers, A, B and E are $n{\times}n$ nonnegative matrices, C and D are arbitrary $n{\times}n$ real matrices. A sufficient condition for the existence of the elementwise minimal nonnegative solution is derived. The monotone convergence of Newton's method for solving the equation is considered. Several numerical examples to show the efficiency of the proposed Newton's method are presented.

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원 (Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography)

  • 김봉석;박형준;김경연
    • 전기전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.219-224
    • /
    • 2015
  • 전기 임피던스 단층촬영 기법은 전극들을 통해 전류를 주입하고 이에 유기되는 전압을 측정한 후, 이들 데이터를 기반으로 내부의 도전율 분포를 영상으로 복원하는 방법이다. 이 논문에서는 기존의 Gauss-Newton 방법의 역행렬 항목의 차원을 도메인의 원소의 개수가 아닌 데이터의 개수의 차원으로 바꿔줌으로써, 관심 도메인 내부의 도전율 분포를 보다 빠르게 추정할 수 있는 방법을 제안하였다. 그리고 자코비안 행렬의 대각성분의 최소-최대를 이용하여 조정인자를 계산하는 방법을 함께 제안하였다. 몇 가지 시나리오를 설정하고 모의실험을 통해 제안한 방법의 복원 성능을 비교분석하였다.