• Title/Summary/Keyword: Newton-Raphson

Search Result 589, Processing Time 0.028 seconds

A Study on the Snap-through Behaviour of Plate Elements due to the Initial Deflection Shape (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • Park, Joo-Shin;Lee, Kye-Hee;Ko, Jae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Since High Tensile Steel has been widely used to thin plate on the steel structure and marine structure, It has increased possibility of buckling. Especially, initial deflection of ship structure is mainly caused by heat processing of welding or cutting etc. This initial deflection has negative effect to thin plate, which would incur a complicated nonlinear behavior accompanied with secondary buckling. If idealized initial deflection is considered in early marine structure design of secondary buckling, accuracy and reliability will be improved considerably. The measurement data of initial deflection from experiment is applied to finite element series analysis. For FEA(ANSYS), Applied nonlinear buckling analysis is used by Newton-Raphson method & Arc-length method included in this program.

An exact floating point square root calculator using multiplier (곱셈기를 이용한 정확한 부동소수점 제곱근 계산기)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1593-1600
    • /
    • 2009
  • There are two major algorithms to find a square root of floating point number, one is the Newton_Raphson algorithm and GoldSchmidt algorithm which calculate it approximately by iterating multiplications and the other is SRT algorithm which calculates it exactly by iterating subtractions. This paper proposes an exact floating point square root algorithm using only multiplication. At first an approximate inverse square root is calculated by Newton_Raphson algorithm, and then an exact square root algorithm by reducing an error in it and a compensation algorithm of it are proposed. The proposed algorithm is verified to calculate all of numbers in a single precision floating point number and 1 billion random numbers in a double precision floating point number. The proposed algorithm requires only the multipliers without another hardware, so it can be widely used in an embedded system and mobile production which requires an efact square root of floating point number.

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Optimum Design of Composite Framed Structures Based Reliability Index (신뢰성지수를 고려한 합성 뼈대구조물의 최적설계에 관한 연구)

  • Jung, Young Chae;Kim, Jong Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.389-401
    • /
    • 2003
  • The purpose of this study is to develop an algorithm, which can be designed the optimal sections of the composite framed structures constituted with the beams and the columns consisted of H type of steel section and concrete considering the reliability index. The optimized problem or the composite framed structures is formulated with the objective function and the constraints taking the section sizes as the design variables. The objective functions are constituted by the total costs of constructions. Also, the constraints are derived by considering the reliability index of section stress and allowable stress. The algorithm optimized the section of the composite framed structures utilizes the SUMT method using the modified Newton-Raphson direction method. The optimizing algorithm developed in this study is applied to the numerical examples with respecting a one-bay, one-story composite framed structure and a one-bay five-story one for the practical utilization of design on the composite framed structures using the reliability indices$({\beta})$ three and zero. In addition, their numerical results are compared and analyzed to examine the possibility of optimization the applicability, and the convergence this algorithm.

Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics (재료 비선형과 연속체 손상역학을 고려한 복합 적층판의 강도 예측)

  • Park, Kook-Jin;Kang, Hee-Jin;Shin, Sangjoon;Choi, Ik-Hyun;Kim, Minki;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.927-936
    • /
    • 2014
  • This paper presents development and verification of the progressive failure analysis upon the composite laminates. Strength and stiffness of the fiber-reinforced composite are analyzed by property degradation approach with emphasis on the material nonlinearity and continuum damage mechanics (CDM). Longitudinal and transverse tensile modes derived from Hashin's failure criterion are used to predict the thresholds for damage initiation and growth. The modified Newton-Raphson iterative procedure is implemented for determining nonlinear elastic and viscoelastic constitutive relations. Laminar properties of the composite are obtained by experiments. Prediction on the un-notched tensile (UNT) specimen is performed under the laminate level. Stress-strain curves and strength results are compared with the experimental measurement. It is concluded that the present nonlinear CDM approach is capable of predicting the strength and stiffness more accurately than the corresponding linear CDM one does.

Optimal Parameter Selection by Health Monitoring of Gas Turbine Engines using Gas Path Analysis (GPA를 이용한 가스터빈 엔진의 성능진단에 의한 최적 계측변수 선정에 관한 연구)

  • ;Riti Singh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1999
  • For performance prediction and diagnostics of gas turbine engines, linear and non-linear gas path analysis are applied. In order to find optimal instrument parameters to detect the physical faults such as (outing, erosion and corrosion, non-linear gas path analysis is used. A typical industrial gas turbine engine, TB5000, is used to study the effect of physical faults on engine performance. Through comparison of RMS error between linear and non-linear gas path analysis, the optimal instrument parameters can be defined. As a result, it is found that the linear GPA has the level of error introduced by the assumption of the linear mode: can be of the same order of magnitude as the fault being soughtwhile the non-linear GPA can be solved the non-linear relationships between dependent and independent parameters using an iterative method such as the Newton-Raphson method with sufficient accuracy.

  • PDF

The Static Nonlinear Analysis of the Offshore Pipeline (해저(海底)파이프라인의 정적(靜的) 비선형(非線形) 해석(解析))

  • Park, Young Suk;Chung, Tae Ju;Cho, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 1990
  • The static nonlinear analysis of offshore pipeline is carried out by the finite element method. The governing equilibrium equation are derived by the principle of minimum potential energy and the modified Newton-Raphson procedure is used to solve the system of nonlinear algebraic equation. Geometrically nonlinear beam elements and spring elements are utilized to model the pipeline, stinger, pipe supports and seabed simultaneously. The beam element developed can be used to model redundant structures. It provides for both the torsional deformation and elongation of pipeline, and permits the use of different physical properties in each principal direction. The validity of this method is investigated by comparing the results with these obtained by other methods.

  • PDF

The Shape Optimization of Plane Truss Structures with Constraints based on the Failure Probability of Member (부재(部材)의 파괴확률(破壞確率)을 고려(考慮)한 트러스 구조물(構造物)의 형장최적화(形狀最適化))

  • Lee, Gyu Won;Lim, Byeong Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.141-154
    • /
    • 1987
  • The algorithm proposed utilizes the tow-levels technique. In the first level which consists of teeatment only the applied load and design stress as the random variables whose parent distribution has the normal distribution, the cross-sectional areas of the truss members such that the their probabilities of failure have the preseribed failure probabilites are optimized by transforming the nonlinear problem into SUMT, and solving it utilizing modified Newton-Raphson method. In the second level, the geometric shape of truss structure is optimized by utilizing the unidirectional search technique of Powell method which makes it possible to minimize only the objective function. The algorithm proposed is numerically tested for the several truss structures with various shapes and loading conditions. The numerical analysis shows that the rate of decreasing the weight of truss structures is dependent on the prescribed failure probability of the each member of truss structure and the covariance of the applied load and design stress.

  • PDF

Development of Nine-node Co-rotational Planar Element for Elastoplastic/Contact Analysis (탄소성/접촉 해석을 위한 Co-rotational 정식화 기반의 9절점 평면 요소 개발)

  • Cho, Hae-Seong;Joo, Hyun-Shig;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents development of the nine-node co-rotational(CR) planar element applicable for elastoplastic and contact analysis. The CR formulation is one of the efficient geometrically nonlinear formulations. It is based on the assumptions of small strain and large displacement. Further, it is extended to both elastoplastic analysis and contact analysis in this paper. For accurate plastic analysis, nine-node quadrilateral element, which can provide accurate stress prediction, is chosen. Bi-linear hardening rule based on Newton- Raphson return-mapping is employed. Also, Lagrange multiplier is used in order for constraints regarding the contact analysis. The present development is validated via the time transient problems. The present results are compared with those obtained by the other existing software.

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.