• Title/Summary/Keyword: News Big data

Search Result 291, Processing Time 0.024 seconds

Political Information Filtering on Online News Comment (정보 중립성 확보를 위한 인터넷 뉴스 댓글의 정치성향 분석)

  • Choi, Hyebong;Kim, Jaehong;Lee, Jihyun;Lee, Mingu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.575-582
    • /
    • 2020
  • We proposes a method to estimate political preference of users who write comments on internet news. We collected and analyzed a massive amount of new comment data from internet news to extract features that effectively characterizes political preference of users. We expect that it helps user to obtain unbiased information from internet news and online discussion by providing estimated political stance of news comment writer. Through comprehensive tests we prove the effectiveness of two proposed methods, lexicon-based algorithm and similarity-based algorithm.

Water leakage accident analysis of water supply networks using big data analysis technique (R기반 빅데이터 분석기법을 활용한 상수도시스템 누수사고 분석)

  • Hong, Sung-Jin;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1261-1270
    • /
    • 2022
  • The purpose of this study is to collect and analyze information related to water leaks that cannot be easily accessed, and utilized by using the news search results that people can easily access. We applied a web crawling technique for extracting big data news on water leakage accidents in the water supply system and presented an algorithm in a procedural way to obtain accurate leak accident news. In addition, a data analysis technique suitable for water leakage accident information analysis was developed so that additional information such as the date and time of occurrence, cause of occurrence, location of occurrence, damaged facilities, damage effect. The primary goal of value extraction through big data-based leak analysis proposed in this study is to extract a meaningful value through comparison with the existing waterworks statistical results. In addition, the proposed method can be used to effectively respond to consumers or determine the service level of water supply networks. In other words, the presentation of such analysis results suggests the need to inform the public of information such as accidents a little more, and can be used in conjunction to prepare a radio wave and response system that can quickly respond in case of an accident.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

A Study on Sentiment Analysis of Media and SNS response to National Policy: focusing on policy of Child allowance, Childbirth grant (국가 정책에 대한 언론과 SNS 반응의 감성 분석 연구 -아동 수당, 출산 장려금 정책을 중심으로-)

  • Yun, Hye Min;Choi, Eun Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Nowadays as the use of mobile communication devices such as smart phones and tablets and the use of Computer is expanded, data is being collected exponentially on the Internet. In addition, due to the development of SNS, users can freely communicate with each other and share information in various fields, so various opinions are accumulated in the from of big data. Accordingly, big data analysis techniques are being used to find out the difference between the response of the general public and the response of the media. In this paper, we analyzed the public response in SNS about child allowance and childbirth grant and analyzed the response of the media. Therefore we gathered articles and comments of users which were posted on Twitter for a certain period of time and crawling the news articles and applied sentiment analysis. From these data, we compared the opinion of the public posted on SNS with the response of the media expressed in news articles. As a result, we found that there is a different response to some national policy between the public and the media.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data (텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로)

  • Park, Ju-Yeon;Jeong, Do-Heon
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.27-35
    • /
    • 2022
  • The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.

News Big Data Analysis of 'Tap Water Larvae' Using Topic Modeling Analysis (토픽 모델링을 활용한 '수돗물 유충' 뉴스 빅데이터 분석)

  • Lee, Su Yeon;Kim, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.28-37
    • /
    • 2020
  • This study was conducted to propose measures to improve crisis response to environmental issues by analyzing the news big data on the 'tap water larvae' situation and identifying related major keywords and topics. To accomplish this, 1,975 cases of 'tap water larvae' reported between July 13 to August 31, 2020 were divided into three periods and analyzed using topical modeling techniques. The analysis output 15 topics for each period. According to the result, the 'tap water larvae' incident, as reported in the media, is divided into the occurrence, diffusion, and rectification stages. The government's response and civilian risk consciousness and reaction could also be seen. Based on the result, the following measures to respond to environment risk is proposed. First, it is necessary to explore the various intertwined context with the 'tap water larvae' incident at its core and develop responsiveness to environmental problems through education which forms integrated views. Second, a role to monitor the environment must be implemented and civilian-participated environmental information must be shared through the application of internet communities. Third, the cultivation and deployment of environmental communicators who provide and communicate fast and accurate environment information is required. This study, as the first in Korea to use the topic modeling analysis method based on big data related to 'tap water larvae', has academic significance in that it has empirically and systematically analyzed environmental issues which appear as unstructured data. It also political significance as it suggests ways to improve environmental education and communication.

A Semantic Network Analysis of Big Data regarding Food Exhibition at Convention Center (전시컨벤션센터 식품박람회와 관련된 빅데이터의 의미연결망 분석)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • The purpose of this study was to visualize the semantic network with big data related to food exhibition at convention center. For this, this study collected data containing 'coex food exhibition/bexco food exhibition' keywords from web pages and news on Google during one year from January 1 to December 31, 2016. Data were collected by using TEXTOM, a data collecting and processing program. From those data, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of hospitality and destinations was high. In addition, the web visibility was also high for convention center programs, such as festival, exhibition, k-pop and event; hospitality related words, such as tourists, service, hotel, cruise, cuisine, travel. Convergence of iterated correlations showed 4 clustered named "Coex", "Bexco", "Nations" and "Hospitality". It is expected that this diagnosis on food exhibition at convention center according to changes in domestic environment by using these web information will be a foundation of baseline data useful for establishing convention marketing strategies.

An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data (빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

The Analysis of News Articles and Currency Exchange Rates (신문 기사와 환율 분석)

  • Kim, Dong Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.89-91
    • /
    • 2017
  • A currency exchange is the rate to exchange currencies between different countries and the one of important factors to measure the economic size or status of a country. The currency exchange is affected by various economic or social events and changed dynamically. However, since too many economic and social factors affect the exchange rate and the leverage rate of each factor is so floating, it is difficult to define clearly the relationships between the exchange rate and the specific factor. In this paper, we analyze the data pattern for the exchange rate and news articles. To do this, we counts the frequencies of words presented in the news articles during specific periods and compare the frequencies with the margins of exchange rates.

  • PDF