• 제목/요약/키워드: News Big data

검색결과 291건 처리시간 0.025초

뉴스 빅데이터를 이용한 우리나라 언론의 기록관리 분야 보도 특성 분석: 1999~2018 뉴스를 중심으로 (An Analysis of News Report Characteristics on Archives & Records Management for the Press in Korea: Based on 1999~2018 News Big Data)

  • 한승희
    • 정보관리학회지
    • /
    • 제35권3호
    • /
    • pp.41-75
    • /
    • 2018
  • 이 연구에서는 1999년 1월부터 2018년 6월 현재까지 약 20년 간의 기록관리를 주제로 한 뉴스 빅데이터 4,680 건을 '빅카인즈'에서 추출하여, 이를 대상으로 우리나라 언론의 기록관리 주제에 대해 시계열 기반으로 보도 특성을 분석하고자 하였다. 먼저, 기록관리에 대한 언론 보도량의 차이를 살펴보기 위해 시기별, 주제별, 언론사 유형별 보도량을 분석하였다. 또한 기록관리 주제에 대한 언론 보도 내용의 차이에 대한 특성을 분석하기 위해 단어빈도 기반 내용 분석과 언어 네트워크 분석을 수행하여 언론 보도 내용의 시기별, 주제별, 언론사 유형별 차이를 분석하였다. 분석 결과, 기록관리 분야 뉴스 보도는 보도량과 보도 내용에 있어 시기별, 주제별, 언론사별로 차이가 있는 것으로 나타났다. 뉴스 보도량은 2007년 대통령기록물관리법이 제정된 이후부터 증가하기 시작하여 2013년에 가장 많은 뉴스가 보도된 것으로 나타났으며, 정치와 사회 주제를 중심으로 중앙지와 경제지가 가장 많은 양의 뉴스를 보도한 것으로 나타났다. 또한 뉴스 보도 내용의 분석결과, 기록관리가 도입된 처음 10년 동안은 기록관리의 현장 적용과 확산 과정에서 발생하는 이슈들을 중심으로 뉴스 주제가 형성되다가, 대통령기록물관리법 제정 이후로 기록관리가 정치적, 사회적 이슈의 주요 요인이 되면서 정치, 사회분야의 뉴스가 많이 보도된 것으로 나타났다.

뉴스 빅데이터를 활용한 코로나19 언론보도 분석 :토픽모델링 분석을 중심으로 (COVID-19 News Analysis Using News Big Data : Focusing on Topic Modeling Analysis)

  • 김태종
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.457-466
    • /
    • 2020
  • 본 연구의 목적은 최근 확산되고 있는 코로나19의 뉴스 빅데이터를 활용하여 언론을 통해 사회적으로 형성되고 있는 주요 의제가 무엇이며 어떻게 변화하는지 파악해, 추후 언론보도의 방향성을 제안하는 것이다. 이를 위해 2019년 12월 31일부터 2020년 3월 11일까지 보도된 47,816건의 뉴스 빅데이터를 감염병 위기경보 4단계(관심-주의-경계-심각)를 기준으로 4개 시기로 구분하여 토픽모델링 분석을 실시해, 총 20개의 토픽을 도출하였다. 토픽 모델링 분석 결과를 토대로, 본 연구에서는 다음 사항들을 제안하였다. 첫째, '불안', '공포' 등의 자극적인 표현을 자제하고 중립적이고 객관적인 보도용어 사용이 필요하다. 둘째, 단순 사건보도식 뉴스제작을 탈피하여, 더욱 심층적이고 맥락적인 뉴스 제작이 요구된다. 셋째, 감염병 관련 상황별 세부 위기커뮤니케이션 매뉴얼 마련이 필요하다. 넷째, 시민주도의 위기 극복노력을 중점적으로 조명하는 보도가 필요하다. 본 연구는 코로나19 뉴스 빅데이터를 토픽모델링 분석방법을 활용하여 분석한 최초의 논문이라는 학술적 의의와 국가 위기커뮤니케이션 정책개발의 기초자료로 활용될 수 있는 정책적 의의를 가진다.

재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발 (Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data)

  • 조수지;이기광
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

Understanding the Food Hygiene of Cruise through the Big Data Analytics using the Web Crawling and Text Mining

  • Shuting, Tao;Kang, Byongnam;Kim, Hak-Seon
    • 한국조리학회지
    • /
    • 제24권2호
    • /
    • pp.34-43
    • /
    • 2018
  • The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.

뉴스 빅데이터를 통한 덕수궁 돌담길의 장소 담론 해석 (Interpretation of the place discourse of Deoksugung Doldam-gil through News Big Data)

  • 성지영;김성균
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.923-932
    • /
    • 2017
  • 본 연구는 덕수궁 돌담길의 장소 담론을 뉴스 빅데이터 시스템인 빅카인즈(BIGKinds)의 메타데이터 및 연관어 분석 결과를 토대로 해석하였다. 연구 결과 덕수궁 돌담길은 '문화' 분야의 보도가 가장 많았으며, 그중에서도 '요리_여행', '전시_공연' 관련 뉴스가 거의 전 기간에 걸쳐 높은 비율로 보도되었다. 또한 보행친화도로로서의 '걷고 싶은 거리', 문화와 예술적 장소이자 대상으로서 '문화와 예술의 거리', 역사 문화적 장소인 '역사적 거리'로서 시기별로 다양한 문화적, 역사적 이슈들과 함께 보도되고 있었다. 본 연구는 언론을 통해 형성되고 재현되고 있는 덕수궁 돌담길의 장소 담론 해석을 시도했으며, 장기시계열적 뉴스데이터인 빅데이터를 활용했다는데 그 의의가 있다. 한편 본 연구는 정량적 분석결과를 토대로 정성적 해석으로서 보도량이 많은 분야나 이슈 외에도 보다 미시적이지만 이 장소 중요한 의미의 발굴과 해석을 위한 후속연구가 요구된다.

Strategies for the Development of Watermelon Industry Using Unstructured Big Data Analysis

  • LEE, Seung-In;SON, Chansoo;SHIM, Joonyong;LEE, Hyerim;LEE, Hye-Jin;CHO, Yongbeen
    • 산경연구논집
    • /
    • 제12권1호
    • /
    • pp.47-62
    • /
    • 2021
  • Purpose: Our purpose in this study was to examine the strategies for the development of watermelon industry using unstructured big data analysis. That is, this study was to look the change of issues and consumer's perception about watermelon using big data and social network analysis and to investigate ways to strengthen the competitiveness of watermelon industry based on that. Methodology: For this purpose, the data was collected from Naver (blog, news) and Daum (blog, news) by TEXTOM 4.5 and the analysis period was set from 2015 to 2016 and from 2017-2018 and from 2019-2020 in order to understand change of issues and consumer's perception about watermelon or watermelon industry. For the data analysis, TEXTOM 4.5 was used to conduct key word frequency analysis, word cloud analysis and extraction of metrics data. UCINET 6.0 and NetDraw function of UCINET 6.0 were utilized to find the connection structure of words and to visualize the network relations, and to make a cluster of words. Results: The keywords related to the watermelon extracted such as 'the stalk end of a watermelon', 'E-mart', 'Haman', 'Gochang', and 'Lotte Mart' (news: 015-2016), 'apple watermelon', 'Haman', 'E-mart', 'Gochang', and' Mudeungsan watermelon' (news: 2017-2018), 'E-mart', 'apple watermelon', 'household', 'chobok', and 'donation' (news: 2019-2020), 'watermelon salad', 'taste', 'the heat', 'baby', and 'effect' (blog: 2015-2016), 'taste', 'watermelon juice', 'method', 'watermelon salad', and 'baby' (blog: 2017-2018), 'taste', 'effect', 'watermelon juice', 'method', and 'apple watermelon' (blog: 2019-2020) and the results from frequency and TF-IDF analysis presented. And in CONCOR analysis, appeared as four types, respectively. Conclusions: Based on the results, the authors discussed the strategies and policies for boosting the watermelon industry and limitations of this study and future research directions. The results of this study will help prioritize strategies and policies for boosting the consumption of the watermelon and contribute to improving the competitiveness of watermelon industry in Korea. Also, it is expected that this study will be used as a very important basis for agricultural big data studies to be conducted in the future and this study will offer watermelon producers and policy-makers practical points helpful in crafting tailor-made marketing strategies.

Analysis of the Empirical Effects of Contextual Matching Advertising for Online News

  • Oh, Hyo-Jung;Lee, Chang-Ki;Lee, Chung-Hee
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.292-295
    • /
    • 2012
  • Beyond the simple keyword matching methods in contextual advertising, we propose a rich contextual matching (CM) model adopting a classification method for topic targeting and a query expansion method for semantic ad matching. This letter reports on an investigation into the empirical effects of the CM model by comparing the click-through rates (CTRs) of two practical online news advertising systems. Based on the evaluation results from over 100 million impressions, we prove that the average CTR of our proposed model outperforms that of a traditional model.

빅데이터 확산에 대한 선행 데이터 탐색 및 국내 확산 과정의 시계열 분석 (Exploring the leading indicator and time series analysis on the diffusion of big data in Korea)

  • 최진;김영준
    • 기술혁신연구
    • /
    • 제26권4호
    • /
    • pp.57-97
    • /
    • 2018
  • 빅데이터는 2010년 이후 다양한 산업 분야에서 빠르게 확산이 진행되었다. 본 연구에서는 빅데이터가 확산되는 초기 과정에 대한 시계열 분석을 통해 빅데이터의 범용 기술 특징을 분석하였고, 각 산업의 확산 특성 차이에 대해 조사하였다. 빅데이터를 키워드로 하여 논문, 특허, 뉴스 데이터, 구글트렌드를 분석하여 선행 지수에 해당하는 데이터를 탐색하였고, 논문과 특허보다 뉴스와 구글트렌드가 2년가량 선행하는 트렌드를 보임을 확인하였다. 구글트렌드를 이용하여 국내와 미국, 일본, 중국의 국가별 도입시기와 확산 양산을 비교하였고, 뉴스 데이터를 통해 국내의 주요한 8가지 산업 분야에 대해 확산이 진행되는 과정을 정량적 그리고 사례를 바탕으로 분석하였다. 본 연구를 통해 빅데이터처럼 산업 전반에 걸쳐 영향을 주는 범용 기술이 어떻게 초기 확산이 이루어지는지에 대한 실증적 연구 방법을 제시하였고, 빅데이터가 국내에서 각 산업별 확산 속도 차이는 어디에서 비롯되는지 파악하였다. 본 논문에서 제시한 방법은 빅데이터 이외에 다른 기술의 확산 과정에도 분석할 수 있으며, 특정 국가내의 기술 키워드 확산에 해당하므로 개발도상국에서 외국으로부터 도입된 기술을 어떻게 받아들일지 분석하는데 사용 가능하다. 그리고, 기업 측면에서는 새로운 기술을 출시하고 이를 확산하고자 할 때 어떤 경로가 효과적인지 이해할 수 있다.