• Title/Summary/Keyword: Newmark-${\beta}$ method

Search Result 88, Processing Time 0.028 seconds

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Dynamic Analysis of Guyline in the Offshore Guyed Towers Considering Sea Bed Contact Conditions (심해용 Guyed Tower 계류선의 해저면과의 접촉조건을 고려한 동적 해석)

  • 이명우;박우선;박영석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.244-254
    • /
    • 1991
  • The numerical analysis on tile behaviour of mooring system in the offshore guyed tower is presented. The governing equilibrium equations are derived by the principle of virtual work. The drag and inertia effects of fluid are included in a Morrison type equation. The finite element method is used in the computation. Geometric nonlinearities for the analysis of the mooring line are considered in which both modified Newton-Raphson method and Newmark-$\beta$ method are employed. Numerical experiments show the validity and the capability of the developed mathematical formulation.

  • PDF

Effect of road surface roughness on indirect approach for measuring bridge frequencies from a passing vehicle

  • Chang, K.C.;Wu, F.B.;Yang, Y.B.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.299-308
    • /
    • 2010
  • The indirect approach for measuring the bridge frequencies from the dynamic responses of a passing vehicle is a highly potential method. In this study, the effect of road surface roughness on such an approach is studied through finite element simulations. A two-dimensional mathematical model with the vehicle simulated as a moving sprung mass and the bridge as a simply-supported beam is adopted. The dynamic responses of the passing vehicle are solved by the finite element method along with the Newmark ${\beta}$ method. Through the numerical examples studied, it is shown that the presence of surface roughness may have negative consequence on the extraction of bridge frequencies from the test vehicle. However, such a shortcoming can be overcome either by introducing multiple moving vehicles on the bridge, besides the test vehicle, or by raising the moving speed of the accompanying vehicles.

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

3_D Time-Domain Analysis on the Motion of a Ship Advancing in Waves (파중 진행하는 선박의 3차원 시간영역 운동해석)

  • 홍도천;하태범;김대헌;송강현
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.164-168
    • /
    • 2001
  • The motion of a ship advancing in regular waves is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation. The ship motions in regular waves have been calculated by both the time and frequency domain methods. It has been shown that they agree very well with each other. The present time-domain method can be used to predict the time histories of unsteady motions in irregular waves. It can also be used to calculate the hydrostatic and Froude-Krylov forces over the instantaneous wetted surface of the ship hull to predict large ship motions, in a practical sense, advancing in large amplitude waves.

  • PDF

Analyses on the Behaviour of Ocean Structure Due to Ship Collision (선박의 충돌로 인한 해양구조물의 거동 해석)

  • 이호영;박종환;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.115-119
    • /
    • 2001
  • The simulation of motion responses of a dolphin-moored ocean structure in shallow water when it cllides with a ship, has been carried out. The equation of motion in the time domain according to Cummin's theory is employed, and solved by making use of the Newmark-${\beta}$ method. The added mass and damping coefficients involved in the equations are abtained from a three-dimensional panel method in the frequency domain. The impact forces due to ship collision are calculated using both the elastic and non-elastic modelings. The mooring forces for dolphin systems of ocean structure are regarded as linear spring forces.

  • PDF

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

An Efficient Vibration Analysis of the Floors in Residential Building (주거용 건축물의 효율적인 바닥진동해석)

  • Kim, Tae-Ho;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.228-235
    • /
    • 2005
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulations is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model for considering the large number of modes involving in the dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with floor impact sound insulations in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean floor impact sound insulations use to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations .

  • PDF

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Dynamic response of elasto-plastic planar arches

  • Lee, S.L.;Swaddiwudhipong, S.;Alwis, W.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.9-23
    • /
    • 1996
  • The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The governing equations are formulated through the dynamic equations and compatibility conditions. The latter is established by applying the generalized conjugate segment analogy. Bending moments at the nodes and axial forces in the members are considered as primary variables in the elastic regime. They are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges occur. Newmark-${\beta}$ method is adopted in the time marching process. The interaction diagram of each element is treated as the yield surface for the element and the associated flow rule is enforced as plastic flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while requiring small core storage and short computer time.