• Title/Summary/Keyword: Newmark

Search Result 409, Processing Time 0.018 seconds

Effects of the Recorded Earthquake Data on the Seismic Fragilities of Korean Nuclear Power Plant Structures (한반도 기록지진의 특성이 원자력발전소 구조물의 지진취약도에 미치는 영향 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Seismic fragility analysis (SFA) has been utilized to evaluate the actual seismic capacity of structure and equipment in nuclear power plants (NPP). This paper briefly introduces an improved method for evaluating seismic fragilities of components of NPP's in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. Some significant differences between the Newmark's spectra and the recorded spectra as a site-dependent spectra are assessed. Several comparative SFA's have been performed to evaluate the effects of the recorded earthquakes on the seismic capacities of Korean NPP structures. The results showed that SFA using the Newmark's spectra might over estimate the actual seismic capacities of Korean facilities.

Linear and Nonlinear Analysis of Initially Stressed Elastic Solid (초기응력이 있는 탄성체의 선형 및 비선형해석 -플레이트 스트립을 중심으로)

  • 권영두;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.642-651
    • /
    • 1988
  • The present paper develops finite element procedures to calculate displacements, strains and stresses in initially stressed elastic solids subjected to static or time-dependent loading conditions. As a point of departure, we employ Hamilton's principle to obtain nonlinear equations of motion characterizing the displacement in a solid. The equations of motion reduce to linear equations of motion if incremental stresses are assumed to be infinitesimal. In the case of linear problem, finite element solutions are obtained by Newmark's direct integration method and by modal analysis. An analytic solution is referred to compare with the linear finite element solution. In the case of nonlinear problem, finite element solutions are obtained by Newton-Raphson iteration method and compared with the linear solution. Finally, the effect of the order of Gauss-Legendre numerical integration on the nonlinear finite element solution, has been investigated.

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Assessment of Earthquake Induced Landslide Susceptibility with Variation of Groundwater Level (지하수위 변화에 따른 지진 유발 산사태의 취약섬 분석)

  • Kim, Ji-Seok;Park, Hyuek-Jin;Lee, Jung-Hyun
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • Since the frequency of the earthquake occurrence in Korean peninsular is continuously increasing, the possibility that massive landslides are triggered by earthquake is also growing in Korea. Previously, the landslide is known to be induced by large magnitude earthquake, whose magnitude is larger than 6.0. However, the landslide can be induced by only small magnitude earthquake, especially in the fully saturated soil. Therefore, the susceptibility of landslide caused by small magnitude earthquake in fully saturated soil is analyzed in this study. For that, the topographical and geological characteristics of the site were obtained and managed by GIS software. In the procedure of the study, slope angle, cohesion, friction angle, unit weight of soil were obtained and constructed as a spatial database layer. Combining these data sets in a dynamic model based on Newmark's displacement analysis, the landslide displacements were estimated in each grid cell. In order to check out the possibility of the earthquake induced landslides, the level of the groundwater table is varied from dry to 80% saturated soil. In addition, in order to analyze the effect of the magnitude of earthquake and distance to epicenter, four different earthquakes epicenters were considered in the study area.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

Numerical Analysis of Hydrodynamic Characteristics for Various Types of Jack-up Legs (다양한 형상의 Jack-up Leg에 대한 해양 동역학적 수치해석)

  • Kim, Ji-Seok;Park, Min-Su;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.371-377
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of various types of jack-up legs for a wind turbine installation vessel were analyzed. Using the modified Morison equation, the wave and current excitation forces on the jack-up legs were calculated. A modal analysis was performed to predict the dynamic responses for various types of jack-up legs. The Newmark-beta time integration scheme was used to solve the equation of motion in waves in the time domain. The maximum displacement and maximum bending stress were computed for four different types of legs, and their results were compared to select an optimum leg type. Finally, a six-leg jack-up rig with the selected optimal legs was modeled, and its natural period and hydrodynamic behaviors were evaluated.

Modeling of Fracture Toughness Test Procedures for Metal and Rock Materials using LS-DYNA (LS-DYNA를 이용한 금속 및 암석 재료의 파괴인성시험 모델링)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, two fracture toughness test procedures are modelled for selected metal and rock on LS-DYNA, which is a commercial finite element code. The tests are conducted by using the 3-point bend test procedure for rectangular bar specimen. Because it takes a relatively long time to conduct the test, the implicit solver based on the Newmark method is adopted for the analyses. The values of stress intensity factor obtained from the analyses are 73 and $0.3MPa.m^{0.5}$ for the metal and rock material, respectively. It can be thought that the resulting small value of the fracture toughness of the rock material model well represents the brittleness of rock material.

Dynamic Buckling Characteristics of Arch Structures by Sinusoidal Harmonic Excitation (정현형 조화하중에 의한 아치 구조물의 동적 좌굴 특성에 관한 연구)

  • 윤태영;김승덕
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures are subjected to sinusoidal harmonic excitation with pin-ends. By using Newmark- β method, we can get the nonlinear displacement response, and using this analyze characteristics of the dynamic instability through the running response spectrum by FFT(Fast Fourier Transform).