• Title/Summary/Keyword: New superconductor

Search Result 44, Processing Time 0.017 seconds

Study of the Capsule Train Ride Comfort Improvement by using the Damping Control in Suspension System (현가장치 내 감쇠 제어를 이용한 캡슐트레인 승차감 향상 연구)

  • Lee, Jin-Ho;Lim, Jungyoul;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.547-557
    • /
    • 2020
  • In this study, damping control devices were applied to the suspension system of a capsule train, and the effects were investigated to improve the ride comfort. The superconductor electrodynamic suspension (SC-EDS) method is used for the capsule train levitation. This method has advantages such as no gap control and a large gap. However, the SC-EDS method has disadvantages such as large gap variation and small damping characteristics against outer vibration, which causes degradation of the ride comfort. In this study, the damping control devices in the primary and secondary suspension were considered to improve the ride comfort in the capsule train. Damping control devices in the primary and secondary suspension can reduce the vibration transmission from outer disturbances to the bogie and from the bogie to the car body, respectively. Simulations for dynamic characteristics analyses were conducted based on the capsule train dynamic model to investigate the effects of the damping control devices on the ride comfort. As a result, it was confirmed that the ride comfort requirements according to the ISO standard can be satisfied by applying the damping control in the capsule train suspension.

A Joining Method between HTS Double Pancake Coils (고온초전도 더블 팬케이크 코일들 사이의 접합 방법)

  • Sohn, Myung-Hwan;Sim, Ki-Deok;Kim, Seok-Ho;Kim, Hae-Jong;Bae, Joon-Han;Lee, Eon-Young;Min, Chi-Hyun;Seong, Ki-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.633-639
    • /
    • 2006
  • High temperature superconductor (HTS) winding coil is one of the key component in superconducting device fabrication. Double-pancake style coils are widely used for such application. High resistance between pancake coils greatly affects the machine design, operating condition and thus the stability. In order to reduce such resistance, experimentalists are looking for efficient and damage free coil connecting methods. In this respect, here we proposed parallel joining method to connect the coils. This is to do crossly joining with HTS tapes on two parallel HTS tapes. Joint samples between two parallel HTS tapes were prepared by using HTS tapes and current-voltage (I-V) characteristic curves were investigated at liquid nitrogen temperature i.e., 77.3 K. A 20 cm length joint connected between two parallel HTS tapes shows $32.5n{\Omega}$, for currents up to 250 A. A small HTS magnet, having two double pancake sub-coils connected together through new parallel joint method was fabricated and their current-voltage (I-V) characteristic curve was investigated. At 77.3K, critical current(Ic) of 97 A and resistance of $55n{\Omega}$ for currents upto 130 A were measured. At operating current 86 A lower than Ic, Joule heats generated in whole magnet and at joint region between sub-coils were 226 mW and 0.4 mW, respectively. Low Joule heat generation suggests that this joining method may be used to fabricate HTS magnet or windings.

Synthesis of La0.7Sr0.3Mn1-xIrxO3 thin-films in search of superconductivity

  • Byeongjun Seok;Youngdo Kim;Donghan Kim;Jongho Park;Changyoung Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.10-13
    • /
    • 2023
  • High-TC superconductivity (HTSC) has been the central issue in the field of condensed matter physics for decades. An essential part of the research on superconductivity is finding new exotic superconductors. It was recently suggested that Ir-substituted La0.7Sr0.3MnO3 (LSMIO) is a new high-TC superconductor. However, systematic studies to experimentally verify the superconductivity have not been done. Here, we report the growth processes of LSMIO thin films and their electrical transport properties. We observed a clear negative correlation between the intensity of the laser utilized for film deposition and the Curie temperature of the deposited film. We attributed this effect to the suppression of Sr concentration in the LSMIO films as the laser intensity increased. However, our LSMIO films show conventional ferromagnetism instead of HTSC. To realize the HTSC in LSMIO systems, further exploration of diverse compositions of LSMIO compounds is essential.

The Superconducting Properties of a High-Temperature Superconducting GdBCO-Coated Conductor (고온초전도 GdBCO 박막선재의 초전도 특성)

  • Yang, Seok Han;Song, Kyu Jeong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1293-1301
    • /
    • 2018
  • The basic magnetic properties of commercially available High-$T_c$ Superconductor (HTS) GdBCO-coated conductor (GdBCO-CCs) were investigated by using physical property measurement system-vibrating sample magnetometer (PPMS-VSM). From the zero-field-cooled (ZFC) m(T) curve, the $T_c$ was found to be ~93 K. After removing the background m(H) data, we obtained both the net m(H) data and the ${\Delta}m_{irr}$. The $H_{irr}(T)$ coincided very well with the power-law relation $H_{irr}=H_{irr}(0)(1-T/T_c)^n$ with $$n{\sim_=}1.19$$. The magnetic flux behavior was investigated by using the ${\delta}$ values in the relationship $J_c{\propto}{\Delta}m_{irr}{\propto}H^{-{\delta}}$. A ${\delta}{\approx}0$ region denoting an independent magnetic flux pinning effect, a ${\delta}{\approx}0.6{\sim}1.2$ region representing a collective flux pinning effect due to the interaction, and a ${\delta}{\gg}2$ region representing freely moving magnetic fluxes caused by the Lorentz force were observed. The boundary line between ${\delta}{\approx}0$ and ${\delta}{\approx}0.6{\sim}1.2$ is denoted by a $H_1$, and the one between ${\delta}{\approx}0.6{\sim}1.2$ and ${\delta}{\gg}2$ is denoted by a $H_2$. The ${\delta}(T)$ was obtained in the region of $H_1$ < H < $H_2$. As the temperature was decreased, the ${\delta}$ value gradually decreased.