• Title/Summary/Keyword: New renewable energy system

Search Result 1,388, Processing Time 0.029 seconds

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

Safety Evaluation of Solar Power System in High Humidity Environment (다습환경 태양광발전시스템 안전성 평가)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. Unlike land-based photovoltaics developed on the rooftop and in the mountains of buildings, The floating photovoltaic power generation is a new concept in power generation technology in which photovoltaic modules are installed using buoyancy on the surfaces of dams and reservoirs. It is abundant enough to construct a power plant with a power generation potential of about 5% and a power generation capacity of 4,170MW, so that the land can be efficiently used without destroying the environment. In this paper, the technical standard for evaluating safety in addition to the water-state photovoltaic power generation system is not established yet, and the items to be considered for standardization of the water-state photovoltaic power generation system are summarized in this paper.

A New Anti-Islanding Method for Utility Interconnection of Distributed Power Generation System (분산전원시스템의 계통연계를 위한 새로운 단독운전 방지기법)

  • Hwang In-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.568-576
    • /
    • 2004
  • This paper presents a new anti-islanding method for distributed power generation system (DPGS) using renewable energy. Based on the concept of real and reactive power mismatch, three different islanding conditions are analyzed. It is shown via analysis that islanding voltage is a function of real power alone, where as its frequency is a function of both real and reactive power. Using this analysis, a new anti-islanding method is developed. The proposed protection algorithm continuously perturbs ($\pm$5%) the reactive power supplied by DPGS while simultaneously monitoring the utility voltage and frequency. If a measurable frequency deviation took place by islanding, the real power of DPGS is further reduced to 80%. This detection method is shown to be fast acting under resonant loads. Possible islanding conditions are simulated and verified with analysis. Experimental results on a 0.5kW utility-interactive fuel cell system are suggested.

Performance Evaluation Study of Solarwall-Photovoltaic Module to Generate Solar Electric Power (SWPV 태양 열-전기 복합생산 모듈 성능평가 연구)

  • Naveed Ahmed T;Kang E. C.;Lee E. J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.397-402
    • /
    • 2005
  • Photovoltaic (PV) module can generate electricity using sunlight without causing any environmental degradation. Due to higher fossil fuel prices and environmental awareness, PV applications are becoming more popular as clean source of electricity generation. PV output is sensitive to the operating temperature and can be drastically affected in Building Integrated PV (BIPV) systems. PV Solarwall (SWPV) combination and PV systems have been evaluated in this study for improvement in electrical output and system costs. PV modules under forced ventilation. A 75W polycrystalline silicon PV module was fixed on SW in front of the ventilation fan as it was indicated to be the coolest position on the SW in phoenix simulations. The effectiveness of cooling by means of the forced ventilating air stream has been studied experimentally. The results indicate that there appears to be significant difference in temperature as well as electricity output comparing the SWPV and BIPV options. Electrical output power recovered is about $4\%$ during the typical day of the month of February. RETScreen(R) analysis of a 3kW PV system hypothetically located at Taegu has shown that with typical temperature reduction of $15^{{\circ}C$, it is possible to reduce the simple payback periods by one year. The work described in this paper may be viewed as an appraisal of a SWPV system based on its improved electrical and financial performances due to its ability to operate at relatively lower temperatures.

  • PDF

Portfolio Analysis on the New Power Generation Sources of the Sixth Basic Plan for Long Term Electricity Demand and Supply (포트폴리오 이론을 활용한 제6차 전력수급기본계획의 신규전원구성 비교 연구)

  • Kim, Juhan;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.583-615
    • /
    • 2014
  • Including the rolling black out in 2011, Korea has suffered from rapid increase of electricity consumption and demand forecasting failure for last five years. In addition, because of the Fukushima disaster, high fuel prices, and introduction of new generation sources such as renewables, the uncertainty on a power supply strategy increases. Consequently, a stable power supply becomes the new agenda and a revisino of strategy for new power generation sources is needed. In the light of this, we appraises the sixth basic plan for long term electricity demand and supply considering the changes of foreign and domestic conditions. We also simulate a strategy for the new power generation sources using a portfolio analysis method. As results, a diversity of power generation sources will increase and the share of renewable power generation will be surged on the assumptions of a cost reduction of renewable power sources and an increase of fuel costs. Particularly, on the range of a risk level(standard deviation) from 0.06 and 0.09, the efficient frontier has the most various power sources. Besides, the existing power plan is not efficient so that an improvement is needed. Lastly, the development of an electricity storage system and energy management system is necessary to make a stable and efficient power supply condition.

The Realization of Optimal Control Operation of a Hybrid Electric Vehicle using Neural Network and the Cruise HEV Simulator (최적 제어와 신경회로망을 이용한 하이브리드 전기자동차 시뮬레이션)

  • Kim, Nam-Wook;Ahn, Kuk-Hyun;Cho, Sung-Tae;Lim, Won-Sik;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.349-352
    • /
    • 2005
  • The energy management of an HEV using optimal control and global optimization is thought to be closest to the best operation of the system. However, there are some controversies on the ways of defining the optimization problems and constituting the optimal control simulators. Here, we presented a simulator which adopts the concept of equivalent fuel economy and leads the vehicle to run in a more efficient way. In order to realize the optimal operation of the HEV and check the validity of the control logics, we also developed a forward-facing simulator. The simulator was developed with the Cruise and MATLAB co-simulation interface. Especially, neural network controller was used for the hybrid control module in the simulator. With the simulator, the optimal operation could be converted into hybrid control rules and the validity of the operation was verified.

  • PDF

Synthesis and photovoltaic performance of novel ionic dyes for the dye-sensitized solar cells (신규 유기염료를 적용한 염료감응 태양전지의 광전변환거동)

  • Jung, Mi Ran;Lee, Jeong Gwan;Kim, Sang Ah;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.120.2-120.2
    • /
    • 2011
  • The improvement of solar energy-to-electricity conversion efficiency has continued to be an important research area of dye-sensitized solar cells (DSSCs). The mechanism of DSSCs is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2 or ZnO. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO band gaps of dye moleculed in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for DSSC. We believe that practically useful organic dye photosensitizers can be produced by exploiting electron donor/acceptor system with proper length of ${\pi}$-conjugation in a chromophore to control the absorption wavelength and enhance the photovoltaic performance. In this research, We designed and synthesized organic dyes also investigated the photoelectrochemical properties of a series of ionic dyes in DSSCs.

  • PDF

Experiment of DME autothermal reforming with CGO-based catalysts (CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구)

  • Choi, Seunghyeon;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF

Recent Progress in Bi-Te-based Thermoelectric Materials (Bi-Te계 열전소재 연구 동향)

  • Lee, Kyu Hyoung;Kim, Jong-Young;Choi, Soon-Mok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Thermoelectric (TE) technology is becoming increasingly important in applications of solid-state cooling and renewable energy sources. $Bi_2Te_3$-based TE materials are widely used in small-scale cooling and temperature control applications; however, higher levels of TE performance are required for new applications such as large-scale cooling (e.g., domestic refrigerators or air conditioners) and for highly efficient power generation system. Recently, the TE performance of $Bi_2Te_3$-based materials has been remarkably enhanced by the introduction of nanostructuring technologies which can be used to prepare TE raw materials. Because it takes into account the theoretical and experimental characteristics, nanostructuring has been shown to be one of the most promising ways to realize the simultaneous control of the electronic and thermal transport properties. In this review, emphasis is placed on bulk-type nanostructured $Bi_2Te_3$-based TE materials. Nanostructuring technologies for enhanced TE performance are summarized, and a few important strategies are presented.

The effect of suction pipe leaning angle on the internal flow of pump sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.849-855
    • /
    • 2015
  • A better flow condition for the intake of pump is provided by the sump pump that connects the forebay to the intake of the pump station. If the suction sump is improperly shaped or sized, air-entraining vortices or submerged vortices may develop. These phenomena may greatly affect pump operation if vortices become sufficiently large. Moreover, any remaining vortices in the pump flow passage may result in an increase in the noise and vibration of the pump. Therefore, the vortices in the pump flow passage must be reduced to achieve good pump sump station performance. In this study, the effect of suction pipe leaning angle on the pump sump's internal flow is investigated. Additionally, a pipe type with an elbow shape is investigated. The results show that the air entraining vortices occur under the condition of a water level ratio H/D = 1.31 for each suction pipe type.