Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.1.1

Recent Progress in Bi-Te-based Thermoelectric Materials  

Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University)
Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Abstract
Thermoelectric (TE) technology is becoming increasingly important in applications of solid-state cooling and renewable energy sources. $Bi_2Te_3$-based TE materials are widely used in small-scale cooling and temperature control applications; however, higher levels of TE performance are required for new applications such as large-scale cooling (e.g., domestic refrigerators or air conditioners) and for highly efficient power generation system. Recently, the TE performance of $Bi_2Te_3$-based materials has been remarkably enhanced by the introduction of nanostructuring technologies which can be used to prepare TE raw materials. Because it takes into account the theoretical and experimental characteristics, nanostructuring has been shown to be one of the most promising ways to realize the simultaneous control of the electronic and thermal transport properties. In this review, emphasis is placed on bulk-type nanostructured $Bi_2Te_3$-based TE materials. Nanostructuring technologies for enhanced TE performance are summarized, and a few important strategies are presented.
Keywords
Thermoelectric; $Bi_2Te_3$; Nanostructuring; Raw materials;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Gothard, X. Ji, J. He, and T. M. Tritt, "Thermoelectric and Transport Properties of n-type $Bi_2Te_3$ Nanocomposites," J. Appl. Phys., 103 [5] 054314 (2008).   DOI
2 Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, and J. P. Tu, "Syntheses and Thermoelectric Properties of $Bi_2Te_3$/$Sb_2Te_3$ Bulk Nanocomposites with Laminated Nanostructure," Appl. Phys. Lett., 92 [14] 143106 (2008).   DOI
3 W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "High Thermoelectric Performance BiSbTe Alloy with Unique Low-dimensional Structure," J. Appl. Phys., 105 [11] 113713 (2009).   DOI
4 W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-spun BiSbTe Alloys," Appl. Phys. Lett., 94 [10] 102111 (2009).   DOI
5 M. R. Dirmyer, J. Martin, G. S. Nolas, A. Sen, and J. V. Badding, "Thermal and Electrical Conductivity of Sizetuned Bismuth Telluride Nanoparticles," Small, 5 [8] 933-37 (2009).   DOI
6 M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, "Synthesis and Thermoelectric Characterization of $Bi_2Te_3$ Nanoparticles," Adv. Funct. Mater., 19 [21] 3476-83 (2009).   DOI   ScienceOn
7 Y. C. Zhang, H. Wang, S. Kraemer, Y. F. Shi, F. Zhang, M. Snedaker, K. L. Ding, M. Moskovits, G. J. Snyder, and G. D. Stuck, "Surfactant-free Synthesis of $Bi_2Te_3$-Te Micro-nano Heterostructure with Enhanced Thermoelectric Figure of Merit," ACS Nano, 5 [4] 3158-65 (2011).   DOI   ScienceOn
8 X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-type $Bi_2Te_{2.7}Se_{0.3}$," Nano Lett., 10 [9] 3373-78 (2010).   DOI
9 M. Scheele, N. Oeschler, I. Veremchuk, K. G. Reinsberg, A. M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, and H. Weller, "ZT Enhancement in Solution-grown $Sb_{2-x}Bi_xTe_3$ Nanoplatelets ACS Nano, 4 [7] 4283-91 (2010).   DOI
10 R. Y. Wang, J. P. Feser, X. Gu, K. M. Yu, R. A. Segalman, A. Majumdar, D. J. Milliron, and J. Urban, "Universal and Solution-processable Precursor to Bismuth Chalcogenide Thermoelectric," Chem. Mater., 22 [6] 1943-45 (2010).   DOI
11 G. G. Lee, D. Y. Lee, and G. H. Ha, "Document Synthesis of Bi-Sb-Te Thermoelectric Material by the Plasma Arc Discharge Process," Met. Mater. Int., 17 [2] 245-50 (2011).   DOI
12 P. K. Nguyen, K. H. Lee, J. Moon, S. I. Kim, K. Ahn, L. H. Chen, S. M. Lee, R. K. Chen, S. Jin, and A. E. Berkowitz, "Spark Erosion: A High Production Rate Method for Producing $Bi_{0.5}Sb_{1.5}Te_3$ Nanoparticles with Enhanced Thermoelectric Performance," Nanotechnology, 23 [41] 415604 (2012).   DOI
13 R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, and G. Ramanath, "A New Class of Doped Nanobulk High-figure-of-merit Thermoelectrics by Scalable Bottom-up Assembly," Nature Mater., 11 [3] 233-40 (2012).   DOI   ScienceOn
14 A. Soni, Z. Yanyuan, Y. Ligen, M. K. K. Aik, M. S. Dresselhaus, and Q. Xiong, "Enhanced Thermoelectric Properties of Solution Grown $Bi_2Te_{3-x}$ Sex Nanoplatelet Composites," Nano Lett., 12 [3] 1203-09 (2012).   DOI
15 J. S. Son, M. K. Choi, M. Han, K. Park, J. Kim, S. J. Lim, M. Oh, Y. Kuk, C. Park, S. Kim, and T. Hyeon, "N-type Nanostructured Thermoelectric Materials Prepared from Chemically Synthesized Ultrathin $Bi_2Te_3$ Nanoplates," Nano Lett., 12 [2] 640-47 (2012).   DOI
16 P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T. M. Tritt, M. S. Dresselhaus, and A. M. Rao, "Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type $Bi_2Te_3$," Sci. Rep., 3 3212 (2013).   DOI
17 A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus, and Q. Xiong, "Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered $Bi_2Te_{2.7}Se_{0.3}$ Nanoplatelet Composites," Nano Lett., 12 [8] 4305-10 (2012).   DOI
18 S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity," Nano Lett., 10 [8] 2825-31 (2010).   DOI
19 J. Ko, J. Y. Kim, S. M. Choi, Y. S. Lim, W. S. Seo, and K. H. Lee, "Nanograined Thermoelectric $Bi_2Te_{2.7}Se_{0.3}$ with Ultralow Phonon Transport Prepared from Chemically Exfoliated Nanoplatelets," J. Mater. Chem. A, 1 [41] 12791- 96 (2013).   DOI
20 Z. Chen, M. Y. Lin, G. D. Xu, S. Chen, J. H. Zhang, and M. M. Wang, "Hydrothermal Synthesized Nanostructure Bi-Sb-Te Thermoelectric Materials," J. Alloy Compd., 588 384-87 (2014).   DOI
21 K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit," Nature Chem., 3 [2] 160-66 (2011).   DOI
22 J. Androulakis, I. Todorov, J. He, D. Chung, V. Dravid, and M. G. Kanatzidis, "Thermoelectrics from Abundant Chemical Elements: High-performance Nanostructured PbSe- PbS," J. Am. Chem. Soc., 133 [28] 10920-27 (2011).   DOI
23 J. He, I. D. Blum, H. Q. Wang, S. N. Girard, J. Doak, L. D. Zhao, J. C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, D. N. Seidman, M. G. Kanatzidis, and V. P. Dravid, "Morphology Control of Nanostructures: Na-doped PbTe-PbS System," Nano Lett., 12 [11] 5979-84 (2012).   DOI
24 K. Biswas, J. He, G. Wang, S. Lo, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "High Thermoelectric Figure of Merit in Nanostructured p-type PbTe-MTe (M = Ca, Ba)," Energy Environ. Sci., 4 [11] 4675-84 (2011).   DOI
25 S. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, "Phonon Scattering and Thermal Conductivity in p-type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials," Adv. Funct. Mater., 22 [24] 5175-84 (2012).   DOI
26 K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures," Nature, 489 [7416] 414-18 (2012).   DOI   ScienceOn
27 R. J. Korkosz, T. C. Chasapis, S. Lo, J. W. Doak, Y. J. Kim, C. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "High ZT in p-type $(PbTe)_{1-2x}(PbSe)_x(PbS)_x$ Thermoelectric Materials," J. Am. Chem. Soc., 136 [8] 3225-27 (2014).   DOI
28 J. F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of $Bi_2Te_3$ Polycrystals," Phys. Status Solidi (a), 203 [15] 3768-73 (2006).   DOI
29 D. Park, M. Kim, and T. Oh, "Thermoelectric Energy-conversion Characteristics of n-type $Bi_2(Te,Se)_3$ Nanocomposites Processed with Carbon Nanotube Dispersion," Curr. Appl. Phys., 11 [4] 41-45 (2011).   DOI
30 V. D. Blank, S. G. Buga, V. A. Kulbachinskii, V. G. Kytin, V. V. Medvedev, M. Y. Popov, P. B. Stepanov, and V. F. Skok, "Thermoelectric Properties of $Bi_{0.5}Sb_{1.5}Te_3/C_{60}$ Nanocomposites," Phys. Rev. B, 86 [7] 075426 (2012).   DOI
31 K. T. Kim, S. Y. Choi, E. H. Shin, K. S. Moon, H. Y. Koo, G. G. Lee, and G. H. Ha, "The Influence of CNTs on the Thermoelectric Properties of a CNT/$Bi_2Te_3$ Composite," Carbon, 52 541-49 (2013).   DOI   ScienceOn
32 M. Cutler and N. F. Mott, "Observation of Anderson Localization in an Electron Gas," Phys. Rev., 181 [3] 1336-40 (1969).   DOI
33 D. Vashaee and A. Shakouri, "Improved Thermoelectric Power Factor in Metal-based Superlattices," Phys. Rev. Lett., 92 [10] 106103 (2004).   DOI
34 S. Faleev and F. Leonard, "Theory of Enhancement of Thermoelectric Properties of Materials with Nanoinclusions," Phys. Rev. B, 77 [21] 214304 (2008).   DOI
35 S. Hwang, S. I. Kim, K. Ahn, J. W. Roh, D. J. Yang, S. M. Lee, and K. H. Lee, "Enhancing the Thermoelectric Properties of p-type Bulk Bi-Sb-Te Nanocomposites via Solution-based Metal Nanoparticle Decoration," J. Electron. Mater., 42 [7] 1411-16 (2013).   DOI
36 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008).   DOI   ScienceOn
37 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit," Nature, 413 [6856] 597-602 (2001).   DOI
38 G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling; pp. 407-40 in CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe, CRC Press, Boca Raton, FL, 1995.
39 W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Phys. Rev. Lett., 96 [4] 045901 (2006).   DOI   ScienceOn
40 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, "New Directions for Low-dimensional Thermoelectric Materials," Adv. Mater., 19 [8] 1043-53 (2007).   DOI
41 K. H. Lee, H. S. Kim, S. I. Kim, E. Lee, S. M. Lee, J. Rhyee, J. Y. Jung, I. H. Kim, Y. Wang, and K. Koumoto, "Enhancement of Thermoelectric Figure of Merit for $Bi_{0.5}Sb_{1.5}Te_3$ by Metal Nanoparticle Decoration," J. Electron. Mater., 41 [6] 1165-69 (2012).   DOI
42 W. J. Xie, J. He, H. J. Kang, X. F. Tang, S. Zhu, M. Laver, S. Y. Wang, J. R. D. Copley, C. M. Brown, Q. J. Zhang, and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of $(Bi,Sb)_2Te_3$ Nanocomposites," Nano Lett., 10 [9] 3283-89 (2010).   DOI
43 Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, "Surfactant-free Scalable Synthesis of $Bi_2Te_3$ and $Bi_2Se_3$ Nanoflakes and Enhanced Thermoelectric Properties of Their Nanocomposites," Adv. Mater., 25 [10] 1425-29 (2013).   DOI
44 S. I. Kim, S. Hwang, J. W. Roh, K. Ahn, D. Yeon, and K. H, Lee, "Experimental Evidence of Enhancement of Thermoelectric Properties in Tellurium Nanoparticle-embedded Bbismuth Antimony Telluride," J. Mater. Res., 27 [19] 2449-56 (2012).   DOI
45 Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure-ofmerit in p-type Nanostructured Bismuth Antimony Tellurium Aalloys Made from Elemental Chunks," Nano Lett., 8 [8] 2580-84 (2008).   DOI
46 M. Popov, S. Buga, P. Vysikaylo, P. Stepanov, V. Skok, V. Medvedev, E. Tatyanin, V. Denisov, A. Kirichenko, V. Aksenenkov, and V. Blank, "$C_{60}$-doping of Nanostructured Bi-Sb-Te Thermoelectric," Phys. Status Solidi (a), 208 [12] 2783-89 (2011).   DOI
47 F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, and L. Chen, "Enhanced Thermoelectric Properties of n-type $Bi_2Te_3$-based Nanocomposite fabricated by Spark Plasma Sintering," J. Alloys Compd., 509 [14] 4769-73 (2011).   DOI