• Title/Summary/Keyword: New formulation

Search Result 1,081, Processing Time 0.036 seconds

Spatial Post-buckling Analysis of Thin-walled Space Frames based on the Corotational Formulation (대회전을 고려한 공간 박벽 뼈대구조물의 기하 비선형 후좌굴 거동 해석)

  • Lee, Kyoung Chan;Park, Jung Il;Kim, Sung Bo;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.599-610
    • /
    • 2007
  • In this paper, we described a co-rotational formulation for the geometrical nonlinear analysis of three-dimensional frames. We suggested a new concept called the Zero-Twist-Section Condition (ZTSC) to decide the element coordinate system consistently. According to the ZTSC procedure, it is possible to obtain an element coordinate system and natural deformations consistently when finite displacements and rotations are induced in an element. Based on the developed procedure, numerical examples are investigated to calculate natural rotations while finite displacements are imposed on an element. Also, the developed co-rotational procedure gives accurate results in the analysis of post-buckling problems with finite rotations.

Formulation of Liquid Oral Preparations Containing Itraconazole (이트라코나졸의 경구용 액제 처방화)

  • Jung, Ki-Seop;Hong, Ji-Woong;Choi, Ki-Song;Chi, Sang-Cheol;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.299-303
    • /
    • 2002
  • The oral bioavailability of itraconazole is variable and low in fasting state. This is mainly due to the low solubility of this drug. Bioavailability can be improved by changing the formulation and it is general that the liquid preparations show greater bioavailability than the solid dosage forms such as tablets and capsules do. Benzyl alcohol-water binary mixture showed the excellent solubilizing capacity for itraconazole but the release of the drug from the preparation needs to be enhanced. In this study, various nonionic surfactants and hydrophilic polymers, poloxamers, were screened to investigate their effects on the releasε of itraconazole from the liquid preparations. Poloxamer 407 showed the most enhancing effect on the drug release and the release rate was proportional to thε amount of poloxamer 407 added. A liquid preparation of itraconazole, consisting of benzyl alcohol/water/poloxamer 407 ternary solvent system, releasεd more than 80% of the total drug amount at 5 min and showεd the possibility of a new formulation development.

Preparation of Functional Food in Combination of Tartary Buckwheat and Bean Flour Mixes by Hot Melt Extrusion Process

  • Azad, Obyedul Kalam;Kang, Wie Soo;Park, Cheol Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.71-71
    • /
    • 2018
  • The aim of this study was to prepare a new functional food with enriched bioactive compound by the combination of Tartary buckwheat and bean flour mixes. Two types of bean such as: black bean and white bean with the ratio of 5, 10, 15 % were used to develope a food formulation. The solid formulation of functional food was prepared by the hot melt extrusion process (HME) at the temperature of 60, 90, $120^{\circ}C$. Total phenolic content (TPC), total flavonoid (TF) and DPPH were analysed of the prepared food by the use of spectrophotometer. Results demonstrated that TPC (254 mg/g), TF (18.22 mg/g) and DPPH (88%) were significanlty increased in the receipe of 10% black bean and 90% Tartary buckwheat mixes among the formulation at $90^{\circ}C$. As therefore, it is concluded that the optimum ratio of bean and Tartary buckwheat flour mixes should be considerd for the preparation of high quality functional food.

  • PDF

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

A Study on the Formulation of Uniform Title for Sound Recordings of Korean Traditional Music (한국 전통음악 녹음자료의 통일표제 기술에 관한 연구)

  • Sohn, Jung-Pyo
    • Journal of Korean Library and Information Science Society
    • /
    • v.38 no.3
    • /
    • pp.425-454
    • /
    • 2007
  • This study is to present a draft for the formulation of uniform title for sound recordings of the Korean traditional music. The draft as the results of this study is summarized as follows: In a musical work of a type of non-composition, the popular name is put into square brackets as a uniform title of court music and folk music in the old Korean traditional music, and the composer's original title is put into square brackets as a uniform title of the new Korean traditional music, but the medium of performance and others are omitted except an identifying element. However, for the formulation of uniform title of a type of composition in an instrumental music, the descriptive form consisted of the order of 'name of one type of composition, medium of performance, serial number, opus number, key, and a descriptive word or phrase' is put into square brackets as a uniform title and the identifying elements. And in the vocal music of the old Korean traditional music, the following medium of performance is used: in vocal choruses, a type of voices; in solo voices, a type of solo voice by sex, but one of the new Korean traditional music follows the descriptive form of the western classical music.

  • PDF

Characterization of Physicochemical Properties of Ferulic Acid

  • Sohn, Young-Taek;Oh, Jin-Hee
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1002-1008
    • /
    • 2003
  • Ferulic acid (3-methoxy, 4-hydroxy cinnamic acid) is a flavoid component possessing antioxidant property. The compound is currently under development as a new drug candidate for the treatment of the dementia. The objective of this preformulation study was to determine the physicochemical properties of ferulic acid. The n-octanol to water partition coefficients of ferulic acid were 0.375 and 0.489 at the pHs of 3 and 10, respectively. Accelerated stability study for ferulic acid indicated that the t 90 value for the drug was estimated to be 459 days at $25^{\circ}C$. Ferulic acid was also found to be unstable under the relative humidity of more than 76%, probably because of the hygroscopic nature of the drug. In order to study compatibility of ferulic acid with typical excipients, potential change in differential scanning calorimetry spectrum was studied in 1: 1 binary mixtures of ferulic acid and typical pharmaceutical excipients (e.g., Aerosil, Avicel, CMC, Eudragit, lactose, PEG, PVP, starch and talc). Avicel, CMC, PVP and starch were found to be incompatible with ferulic acid, indicating the addition of these excipients may complicate the manufacturing of the formulation for the drug. Particle size distribution of ferulic acid powder was in the size range of 10-190 $\mu$m with the mean particle size of 61 $\mu$m. The flowability of ferulic acid was apparently inadequate, indicating the granulation may be necessary for the processing of the drug to solid dosage forms. Two polymorphic forms were obtained by recrystallization from various solvents used in formulation. New polymorphic form of ferulic acid, Form II, was obtained by recrystallization from 1,4-dioxane. The equilibrium solubility for Form I was approximately twice of that for Form II. The dissolution rate of Form II was higher than that of Form I in the early phase (<6 min). Therefore, these physicochemical information has to be taken in the consideration for the formulation of ferulic acid.