• Title/Summary/Keyword: New antimalarial candidate

Search Result 4, Processing Time 0.022 seconds

Antimalarial Effects of Areca catechu L.

  • Jiang, Jing-Hua;Jung, Suk-Yul;Kim, Youn-Chul;Shin, Sae-Ron;Yu, Seung-Taek;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.494-498
    • /
    • 2009
  • The emergence and spread of drug-resistant malaria parasites is a serious public health problem in the tropical world. Useful antimalarial drugs such as chloroquine have resistance in the world now. Moreover, other antimalarialdrugs such as mefloquine, halofantrine, atovaquone, proguanil, artemether and lumefantrine retain efficacy but have limitations, one of which is their high cost. New antimalarial drugs are clearly needed now. Cytotoxicity assay and susceptibility assay were performed for the selectivity of herb extracts in vitro. On the basis of high selectivity, 4-day suppressive test and survival test were progressed in Plasmodium berghei-infected mice. The selectivity of Areca catechu L. (ACL) and butanol extract of ACL (ACL-BuOH extract) were 3.4 and 3.0 in vitro, respectively. Moreover in vivo, 4-day suppressive test showed 39.1 % inhibition effect after treated with 150 mg/kg/day ACL-BuOH to P. berghei-infected mice. Survival test also showed 60% survival rate with ACL-BuOH-treated group while all other group mice died. In this study, ACL and ACL-BuOH were investigated for antimalarial activity in vitro and in vivo and they showed a potent antimalarial activity. In particular,ACL-BuOH could specifically lead higher survival rate of mice in vivo. Therefore ACL-BuOH would be a candidate of antimalarial drugs.

Evaluating the activity of N-89 as an oral antimalarial drug

  • Nagwa S. M. Aly;Hiroaki Matsumori;Thi Quyen Dinh;Akira Sato;Shin-ichi Miyoshi;Kyung-Soo Chang;Hak Sun Yu;Takaaki Kubota;Yuji Kurosaki;Duc Tuan Cao;Gehan A. Rashed;Hye-Sook Kim
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.282-291
    • /
    • 2023
  • Despite the recent progress in public health measures, malaria remains a troublesome disease that needs to be eradicated. It is essential to develop new antimalarial medications that are reliable and secure. This report evaluated the pharmacokinetics and antimalarial activity of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the rodent malaria parasite Plasmodium berghei in vivo. After a single oral dose (75 mg /kg) of N-89, its pharmacokinetic parameters were measured, and t1/2 was 0.97 h, Tmax was 0.75 h, and bioavailability was 7.01%. A plasma concentration of 8.1 ng/ml of N-89 was maintained for 8 h but could not be detected at 10 h. The dose inhibiting 50% of parasite growth (ED50) and ED90 values of oral N-89 obtained following a 4-day suppressive test were 20 and 40 mg/kg, respectively. Based on the plasma concentration of N-89, we evaluated the antimalarial activity and cure effects of oral N-89 at a dose of 75 mg/kg 3 times daily for 3 consecutive days in mice harboring more than 0.5% parasitemia. In all the N-89-treated groups, the parasites were eliminated on day 5 post-treatment, and all mice recovered without a parasite recurrence for 30 days. Additionally, administering oral N-89 at a low dose of 50 mg/kg was sufficient to cure mice from day 6 without parasite recurrence. This work was the first to investigate the pharmacokinetic characteristics and antimalarial activity of N-89 as an oral drug. In the future, the following steps should be focused on developing N-89 for malaria treatments; its administration schedule and metabolic pathways should be investigated.

Antimalarial Efficacy of Aqueous Extract of Strychnos ligustrina and Its Combination with Dihydroartemisinin and Piperaquine Phosphate (DHP) against Plasmodium berghei Infection

  • Cahyaningsih, Umi;Sa'diah, Siti;Syafii, Wasrin;Sari, Rita Kartika;Maring, Abdul Jafar;Nugraha, Arifin Budiman
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.339-344
    • /
    • 2022
  • The development of drug resistance is one of the most severe concerns of malaria control because it increases the risk of malaria morbidity and death. A new candidate drug with antiplasmodial activity is urgently needed. This study evaluated the efficacy of different dosages of aqueous extract of Strychnos ligustrina combined with dihydroartemisinin and piperaquine phosphate (DHP) against murine Plasmodium berghei infection. The BALB/c mice aged 6-8 weeks were divided into 6 groups, each consisting of 10 mice. The growth inhibition of compounds against P. berghei was monitored by calculating the percentage of parasitemia. The results showed that the mice receiving aqueous extract and combination treatment showed growth inhibition of P. berghei in 74% and 94%, respectively. S. ligustrina extract, which consisted of brucine and strychnine, effectively inhibited the multiplication of P. berghei. The treated mice showed improved hematology profiles, body weight, and temperature, as compared to control mice. Co-treatment with S. ligustrina extract and DHP revealed significant antimalarial and antipyretic effects. Our results provide prospects for further discovery of antimalarial drugs that may show more successful chemotherapeutic treatment.

Comparative antiplasmodial activity, cytotoxicity, and phytochemical contents of Warburgia ugandensis stem bark against Aspilia africana wild and in vitro regenerated tissues

  • Denis Okello;Jeremiah Gathirwa;Alice Wanyoko;Richard Komakech;Yuseong Chung;Roggers Gang;Francis Omujal;Youngmin Kang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.97-107
    • /
    • 2023
  • Malaria remains to be one of the most severe global public health concerns. Traditionally, Aspilia Africana and Warburgia ugandensis have been used to treat malaria in several African countries for millennia. In the current study, A. africana calli (AaC), A. africana in vitro roots (AaIR), A. africana wild leaf (AaWL), and W. ugandensis stem bark (WuSB) were dried and pulverized. Fourier transform near-infrared spectroscopy was used to analyze the powdered samples, while 80% ethanolic extracts of each sample were assayed for antiplasmodial activity (against Plasmodium falciparum strains DD2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive)) and cytotoxicity. WuSB showed the highest antiplasmodial activity (IC50 = 1.57 ± 0.210 ㎍/ml and 8.92 ± 0.365 ㎍/ml against P. falciparum 3D7 and DD2, respectively) and selectivity indices (43.90 ± 7.914 and 7.543 ± 0.051 for P. falciparum 3D7 and DD2, respectively). The highest total polyphenolic contents (total phenolic and flavonoid contents of 367.9 ± 3.55 mg GAE/g and 203.9 ± 1.43 mg RUE/g, respectively) were recorded for WuSB and the lowest were recorded for AaC. The antiplasmodial activities of the tested plant tissues correlated positively with total polyphenolic content. The high selectivity indices of WuSB justify its traditional applications in treating malaria and present it as a good candidate for discovering new antimalarial compounds. We recommend elicitation treatment for AaIR, which showed moderate antiplasmodial activity against P. falciparum DD2, to increase its secondary metabolite production for optimal antimalarial activity.