• Title/Summary/Keyword: New and Renewable Eco-friendly Energy

Search Result 48, Processing Time 0.026 seconds

Innovation and Future Skills Needs-Green Car (기술혁신과 미래숙련수요 대응-그린카 발전을 중심으로)

  • Hwang, Gyu-Hee;Lee, Joong-Man
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.3
    • /
    • pp.399-422
    • /
    • 2010
  • Global expansion of regulation for carbon emission has brought new industrial regulations and trade barriers while the global economy is promoting economic stimulus through a variety of green investments such as renewable energy development, energy efficiency increase, and environmental improvement simultaneously. Korean government is trying to seek a new opportunity to grow through green investment in this change of business environment and businesses are facing the transition to low-carbon and eco-friendly structure for their survival. It is promoting not only industry structure changes and conversion but also demanding changes of workforce composition and requirement skills. In response to convergence of green economy, manpower development for future skills needs is provided the main impetus for response as well as promotion green growth. This study will analyze human resource development plan due to future skills needs emphasizing on automative industry. Also the study will be researched on the problems of present curriculum of undergraduate and look for improvements tasks. Upon the result, promotion plans for human resource development in other sectors of green car in response to future skills needs in green growth can be found.

  • PDF

A Study on Methods for Developing by Nurturing Clean Thermal Power Generation Technology (청정화력발전 기술 육성 방안 연구)

  • Kim, Yeong-Mi;Lee, Won-Hak
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • The Korean government views coal-fired power plants as the key cause of the fine dust generation, and is developing an energy policy to replace and demolish old coal-fired power plants. According to the Eighth Power Supply Base Plan (2017-2031), the maximum power capacity in 2030 is expected to be 100.5GW, which is 17.9% higher than the current level (85.2GW). The plan aims to reduce the facility size and power generation ratio from nuclear and coal resources to even lower levels than today, and to rapidly expand power generation from new and renewable energy. Despite that, the proportion of coal power generation is still much higher than other resources, and it is expected that the reliance on goal will maintain for next several decades. Under such circumstances, the development, supply, and expansion of clean coal technology (CCT) that is eco-friendly and highly efficient, is crucial to minimize the emission of pollutants such as carbon dioxide and fine dust, as well as maximize the energy efficiency. The Korean government designated the Yong-Dong Thermoelectric Power Plant in Gangneung to develop clean coal power generation, and executed related projects for three years. The current study aims to suggest a plan to develop parts, technologies, testing, evaluation, certification, and commercialization efforts for coal-fired power generation, In addition, the study proposes a strategy to vitalize local economy and connect the development with creation of more jobs.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

Numerical Simulation for the Subsurface Temperature Distribution Disturbed by Heat-Pump Operation (지열펌프 구동에 의한 지중 온도 분포 변화 모델링 연구)

  • Shin, Ji-Youn;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.40-43
    • /
    • 2006
  • Public demand for the heat pump system as a next generation energy equipment is increasing for its eco-friendly and cost-effective advantage. Many researches have been concentrated on how to calculate and develop its own efficiency, while the possible effect of the heat pump operation on the whole subsurface temperature distribution is relatively less considered, During the current study, subsurface temperature disturbance caused by seasonal surface temperature cycle in Busan area and general W-tube heat pump operation is simulated in 3-dimensional heterogeneous medium. It shows that subsurface deeper than 10m from the surface remains nearly unchanged throughout the 4 seasons and groundwater convect ion in highly permeable layer near the surface acts like a main path of heat plume from heat pump system, This implies the significance of detail descript ion in shallow sedimentary layer or highly permeable layer which plays an important role on the regional flow advection and heat transfer. Also, the effect of groundwater convection increases when the arrangement of the 2 injection pipes and 2 extract ion well is maintained parallel to groundwater flow. Therefore, more careful and detail investigation is required before installation and operation of heat pump system that it may not cause any possible change of microbial ecosystem in the shallow subsurface environment or 'contamination of temperature' for groundwater use as well as the loss of efficiency of the equipment itself. This can also help to design the optimized grouting system for heat pump.

  • PDF

A Study on Plans to Construct Green Port around Port environmental regulations (항만환경 규제에 따른 Green Port 구축방안)

  • Lim, Jong-Sup
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.2
    • /
    • pp.99-118
    • /
    • 2010
  • This objective of this study is to thoroughly analyze the policies of international organizations and major advanced countries relevant to the realization of Green port To construct Green ports, there first must be competition to build such ports in sustainable, fixed quantities. Second, there is a great need for cooperation and support networks made binding by mutual agreements on ship recycling. Third, there is a need for scientific research on responses to changes in environmental regulations and on environmental issues. Today, the majority of the world's ports use gasoline or electric energy, and improving capacities for self-sufficiency through development of new and renewable energy is judged to be a pressing task. The conditions for an eco-friendly port is that it must be an important center for economic and industrial activity, and valuable as a site where people live and work, with residences and work places existing in close proximity.

Effect of Glass Frit in $TiO_2$ Electrode for DSSCs (Glass Frit을 이용한 염료감응 태양전지의 광 특성 연구)

  • Kim, Jongwoo;Jeon, Jaeseung;Kim, Dongsun;Hwang, Seongjin;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • Dye sensitized solar cells(DSSCs) have been extensively studied due to their various advantages such as low production cost, colorful design, and eco-friendly process. Long optical path length is one of the most effective method to improve light harvest efficiency for DSSCs. Multi-layered $TiO_2$ nano-structured film with scattering layer has been studied to generate scattering effect by many researchers. It was expected that the difference of refractive index between $TiO_2$ particles and glass frit would generate the light scattering effect and provide the long optical path length. Therefore, to enhance the scattering effect, the frits of $Bi_2O_3-B_2O_3$-ZnO glass system that has the different refractive index were added to $TiO_2$ pastes in this study. First of all, the absorbance and haze factor of $TiO_2$ electrode with dyes and the refractive index of glass frit and $TiO_2$ were measured, respectively. To study the effect of frits, the efficiencies of DSSCs added glass frit and without glass frit were compared. Our results showed slightly higher efficiency with the different absorbance and haze factor of $TiO_2$ and glass frit. It was considered that the light scattering effect would be improved with adding frits to $TiO_2$ paste. Our preliminary studies will be useful for increasing efficiency of DSSCs.

  • PDF

A Study on the Activation of Green Remodeling to Achieve Carbon Neutrality - Focusing on a case of Gwangmyeong City - (탄소중립 목표 달성을 위한 그린리모델링 활성화 방안에 관한 연구 - 광명시 사례를 중심으로 -)

  • Kim, Gi-Ran;Lee, Ju-hyun;Kim, Kyong Ju;Kim, Kyoungmin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.12-21
    • /
    • 2023
  • Green remodeling proposed in the Korean New Deal is a project to build or remodel eco-friendly and energy-efficient buildings using renewable energy facilities and high-performance insulation for public buildings. The government intends to achieve the carbon emission reduction target by conducting green remodeling. Major overseas cities that conduct green remodeling are actively promoting technology support and promotion along with energy performance evaluation according to building characteristics, subsidies for private revitalization, and tax benefits. With this background, the analysis of the current status and problems of the green remodeling project was performed and the Activation factors of Green Remodeling were derived from survey results. This study suggested strategic measures such as a participation of civil society, promotion, and priority selection of administration and policy measures such as a leading role of the public sector, expanding support for the socially underprivileged, and financial support and tax benefits. And this study results are expected to be utilized as basic data to promote the green remodeling project.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.