• Title/Summary/Keyword: New Customer Recommendation

Search Result 70, Processing Time 0.024 seconds

Design of Web Recommendation Service Based on Consumer's Sensibility (고객 감성에 기반한 웹 추천 서비스 설계)

  • Jeon, Yong-Woong;Kim, Jae-Kuk;Park, Ji-Young;Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • Internet shopping has been getting more rousing due to extension of supply with PC(personal computer) and a rapid rise of use of internet. Some companies have been continually researching in how to serve individuals with each ordered information, which aimed at getting ordinary customers to induce to be loyal customers. For that, there is progress of a service of a web-recommendation which considers individual attribution. This study is suggested a method which is a service of the web-recommendation by access to sensibility ergonomics approach. Previous studies established that service had a weak point. It did not manage to realize new needs of customers. Proposed service of the web-recommendation has been designed, which preferentially propose goods included customer's sensibility to the customer who wants it. This study is expected that it will encourage a rise of products' purchasing power of customers, make an increase in a profit of both sellers and people who operate electric commercial and satisfaction of customers will go up in the same. Also, products accord with sensibility of customers will be recommended customers by the suggested service of the web-recommendation. In addition, there will be a decline of time-consuming about making a choice among some products.

Effect of Market-Wholesaler System on Market Expansion, Re-transaction Intention, and Recommendation Intention

  • ROH, Gye-Ho;YI, Jong-Hyun;CHO, Young-Sam
    • Journal of Distribution Science
    • /
    • v.18 no.5
    • /
    • pp.99-109
    • /
    • 2020
  • Purpose: This study aims to develop and empirically analyze a research model in order to comprehend the relationship among the service quality of market-wholesaler system, re-transaction intention, and recommendation intention of forwarder. Further, we suggest new six factors reflecting the service quality of market-wholesaler system and highlight market expansion of forwarder as a mechanism in the relationship. Research design, data and methodology: The authors developed the new scales measuring the service quality of market-wholesaler system (i.e. trade price, price fluctuation, payment receipt, settlement period, trade information, and customer service) and conducted a cross-sectional survey for 439 forwarders in a wholesale market. And then we performed a series of path analyses to test hypotheses. The hypotheses are as follows. [H1] The service quality of market-wholesaler system will positively affect forwarders' market expansion, [H2] Forwarders' market expansion will positively affect their re-transaction intention, [H3] Forwarders' market expansion will positively affect their recommendation intention, [H4] Forwarders' re-transaction intention will positively affect their recommendation intention. Results: The results showed that all the six factors for the service quality of market-wholesaler system were positively related to market expansion of forwarders. There was a differential effectiveness in the six factors of the service quality. More specifically, the positive effect of customer service factor was the strongest on market expansion of forwarders. And the respective effects of trade price, price fluctuation, settlement period, trade information factors were followed in order. The positive effect of payment receipt factor was the weakest on market expansion of forwarders. Also, market expansion of forwarders was positively related to their re-transaction intention and recommendation intention. Furthermore, market expansion of forwarders was indirectly related to recommendation intention through re-transaction intention as well. Conclusions: The research findings provide important theoretical and practical implications. This study is the first to attempt to test the perception of forwarders for the service quality of market-wholesaler system by developing and using the new scales. Also, there has been a sharp controversy about the effectiveness of market-wholesaler system. The findings support that market-wholesaler system would be activated by empirically verifying the effectiveness of the service quality on the various outcomes.

Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering (협업필터링의 신규고객추천 및 희박성 문제 해결을 위한 중심성분석의 활용)

  • Cho, Yoon-Ho;Bang, Joung-Hae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.99-114
    • /
    • 2011
  • Collaborative Filtering (CF) suffers from two major problems:sparsity and cold-start recommendation. This paper focuses on the cold-start problem for new customers with no purchase records and the sparsity problem for the customers with very few purchase records. For the purpose, we propose a method for the new customer recommendation by using a combined measure based on three well-used centrality measures to identify the customers who are most likely to become neighbors of the new customer. To alleviate the sparsity problem, we also propose a hybrid approach that applies our method to customers with very few purchase records and CF to the other customers with sufficient purchases. To evaluate the effectiveness of our method, we have conducted several experiments using a data set from a department store in Korea. The experiment results show that the combination of two measures makes better recommendations than not only a single measure but also the best-seller-based method and that the performance is improved when applying the hybrid approach.

Implementation of Personalized Recommendation System using RFM method in Mobile Internet Environment (모바일 환경하에 RFM 기법을 이용한 개인화된 추천 시스템 개발)

  • Cho, Young-Sung;Huh, Moon-Haeng;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.41-50
    • /
    • 2008
  • This paper proposes the recommendation system which is a new method using RFM method in mobile internet environment. Using a implict method which is not used user's profile for rating, is not used complicated query processing of the request and the response for rating, it is necessary for user to keep the RFM score about users and items based on the whole purchased data in order to recommend the items. As there are some problems which didn't exactly recommend the items with high purchasablity for new customer and new item that do not have the purchase history data. in existing recommendation systems, this proposing system is possible to solve existing problems, and also this system can avoid the duplicated recommendation by the cross comparison with the purchase history data. It can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic cyber shopping mall. Finally, it is able to realize the personalized recommendation system with high purchasablity for one to one web marketing through the mobile internet.

  • PDF

Mining the Change of Customer Buying Behavior for Collaborative Recommendations

  • Cho, Yeong-Bin;Cho, Yoon-Ho;Kim, Soung-Hie
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.239-250
    • /
    • 2004
  • The preference of customers change as time goes by. The existing Collaborative Filtering (CF) techniques has no room for including this change yet, although these techniques have been known to be the most successful recommendation technique that has been used in a number of different applications. In this study, we proposed a new methodology for enhancing the quality of recommendation using the customers' dynamic behaviors over time. The proposed methodology is applied to a large department store in Korea, compared to existing CF techniques. Some experiments on the real world data show that the proposed methodology provides higher quality recommendations than other CF techniques, especially better performance on heavy users.

  • PDF

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

A study on development method for practical use of Big Data related to recommendation to financial item (금융 상품 추천에 관련된 빅 데이터 활용을 위한 개발 방법)

  • Kim, Seok-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.73-81
    • /
    • 2014
  • This study proposed development method for practical use techniques compromise data storage layer, data processing layer, data analysis layer, visualization layer. Data of storage, process, analysis of each phase can see visualization. After data process through Hadoop, the result visualize from Mahout. According to this course, we can capture several features of customer, we can choose recommendation of financial item on time. This study introduce background and problem of big data and discuss development method and case study that how to create big data has new business opportunity through financial item recommendation case.

An Intelligent Recommendation System by Integrating the Attributes of Product and Customer in the Movie Reviews (영화 리뷰의 상품 속성과 고객 속성을 통합한 지능형 추천시스템)

  • Hong, Taeho;Hong, Junwoo;Kim, Eunmi;Kim, Minsu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-18
    • /
    • 2022
  • As digital technology converges into the e-commerce market across industries, online transactions have activated, and the use of online has increased. With the recent spread of infectious diseases such as COVID-19, this market flow is accelerating, and various product information can be provided to customers online. Providing a variety of information provides customers with various opportunities but causes difficulties in decision-making. The recommendation system can help customers to make a decision more effectively. However, the previous research on recommendation systems is limited to only quantitative data and does not reflect detailed factors of products and customers. In this study, we propose an intelligent recommendation system that quantifies the attributes of products and customers by applying text mining techniques to qualitative data based on online reviews and integrates the existing objective indicators of total star rating, sentiment, and emotion. The proposed integrated recommendation model showed superior performance to the overall rating-oriented recommendation model. It expects the new business value to be created through the recommendation result reflecting detailed factors of products and customers.