• Title/Summary/Keyword: New Algorithm

Search Result 11,772, Processing Time 0.044 seconds

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.

Development of JPEG2000 Viewer for Mobile Image System (이동형 의료영상 장치를 위한 JPEG2000 영상 뷰어 개발)

  • 김새롬;정해조;강원석;이재훈;이상호;신성범;유선국;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.

  • PDF

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

Development of Sample Survey Design for the Industrial Research and Development Statistics (표본조사에 의한 기업 연구개발활동 통계 작성방안)

  • Cho, Seong-Pyo;Park, Sun-Young;Han, Ki-In;Noh, Min-Sun
    • Journal of Technology Innovation
    • /
    • v.17 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • The Survey on the Industrial Research and Development(R&D) is the primary source of information on R&D performed by Korea industrial sector. The results of the survey are used to assess trends in R&D expenditures. Government agencies, corporations, and research organizations use the data to investigate productivity determinants, formulate tax policy, and compare individual company performance with industry averages. Recently, Korea Industrial Technology Association(KOITA) has collected the data by complete enumeration. Koita has, currently, considered sample survey because the number of R&D institutions in industry has been dramatically increased. This study develops survey design for the industrial research and development(R&D) statistics by introducing a sample survey. Companies are divided into 8 groups according to the amount of R&D expenditures and firm size or type. We collect the sample from 24 or 8 sampling strata and compare the results with those of complete enumeration survey. The estimates from 24 sampling strata are not significantly different to the results of complete enumeration survey. We propose the survey design as follows: Companies are divided into 11 groups including the companies of which R&D expenditures are unknown. All large companies are included in the survey and medium and small companies are sampled from 70% and 3%. Simple random sampling (SRS) is applied to the small company partition since they show uniform distribution in R&D expenditures. The independent probability proportionate to size (PPS) sampling procedure may be applied to those companies identified as 'not R&D performers'. When respondents do not provide the requested information, estimates for the missing data are made using imputation algorithms. In the future study, new key variables should be developed in survey questionnaires.

  • PDF

Prefetching based on the Type-Level Access Pattern in Object-Relational DBMSs (객체관계형 DBMS에서 타입수준 액세스 패턴을 이용한 선인출 전략)

  • Han, Wook-Shin;Moon, Yang-Sae;Whang, Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.529-544
    • /
    • 2001
  • Prefetching is an effective method to minimize the number of roundtrips between the client and the server in database management systems. In this paper we propose new notions of the type-level access pattern and the type-level access locality and developed an efficient prefetchin policy based on the notions. The type-level access patterns is a sequence of attributes that are referenced in accessing the objects: the type-level access locality a phenomenon that regular and repetitive type-level access patterns exist. Existing prefetching methods are based on object-level or page-level access patterns, which consist of object0ids of page-ids of the objects accessed. However, the drawback of these methods is that they work only when exactly the same objects or pages are accessed repeatedly. In contrast, even though the same objects are not accessed repeatedly, our technique effectively prefetches objects if the same attributes are referenced repeatedly, i,e of there is type-level access locality. Many navigational applications in Object-Relational Database Management System(ORDBMs) have type-level access locality. Therefore our technique can be employed in ORDBMs to effectively reduce the number of roundtrips thereby significantly enhancing the performance. We have conducted extensive experiments in a prototype ORDBMS to show the effectiveness of our algorithm. Experimental results using the 007 benchmark and a real GIS application show that our technique provides orders of magnitude improvements in the roundtrips and several factors of improvements in overall performance over on-demand fetching and context-based prefetching, which a state-of the art prefetching method. These results indicate that our approach significantly and is a practical method that can be implemented in commercial ORDMSs.

  • PDF

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.