• Title/Summary/Keyword: New Algorithm

Search Result 11,746, Processing Time 0.038 seconds

Mesh Simplification for Preservation of Characteristic Features using Surface Orientation (표면의 방향정보를 고려한 메쉬의 특성정보의 보존)

  • 고명철;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.458-467
    • /
    • 2002
  • There has been proposed many simplification algorithms for effectively decreasing large-volumed polygonal surface data. These algorithms apply their own cost function for collapse to one of fundamental simplification unit, such as vertex, edge and triangle, and minimize the simplification error occurred in each simplification steps. Most of cost functions adopted in existing works use the error estimation method based on distance optimization. Unfortunately, it is hard to define the local characteristics of surface data using distance factor alone, which is basically scalar component. Therefore, the algorithms cannot preserve the characteristic features in surface areas with high curvature and, consequently, loss the detailed shape of original mesh in high simplification ratio. In this paper, we consider the vector component, such as surface orientation, as one of factors for cost function. The surface orientation is independent upon scalar component, distance value. This means that we can reconsider whether or not to preserve them as the amount of vector component, although they are elements with low scalar values. In addition, we develop a simplification algorithm based on half-edge collapse manner, which use the proposed cost function as the criterion for removing elements. In half-edge collapse, using one of endpoints in the edge represents a new vertex after collapse operation. The approach is memory efficient and effectively applicable to the rendering system requiring real-time transmission of large-volumed surface data.

  • PDF

Detection and Estimation of a Faults on Coaxial Cable with TFDR Algorithm (Time Frequency Domain Reflectometry 기법을 이용한 Coaxial Cable에서의 결함 감지 및 추정)

  • Song, Eun-Seok;Shin, Yong-June;Choe, Tok-Son;Yook, Jong-Gwan;Park, Jin-Bae;Powers, Edward J.
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.38-50
    • /
    • 2003
  • In this paper, a new high resolution reflectometry scheme, time-frequency domain reflectometry (TFDR), is proposed to detect and locate fault in wiring. Traditional reflectometry methods have been achieved in either the time domain or frequency domain only. However, time-frequency domain reflectometry utilizes time and frequency information of a transient signal to detect and locate the fault. The time-frequency domain reflectometry approach described in this paper is characterized by time-frequency reference signal design and post-processing of the reference and reflected signals to detect and locate the fault. Design of the reference signal in time-frequency domain reflectometry is based on the determination of the frequency bandwidth of the physical properties of cable under test. The detection and estimation of the fault on the time-frequency domain reflectometry relies on the time-frequency domain reflectometry is compared with commercial time domain reflectomtery (TDR) instrument. In these experiments provided in this paper, TFDR locates the fault with smaller error than TDR. Knowledge of time and frequency localized information for the reference and reflected signal gained via time-frequency analysis, allows one to detect the fault and estimate the location accurately.

  • PDF

Online Signature Verification by Visualization of Dynamic Characteristics using New Pattern Transform Technique (동적 특성의 시각화를 수행하는 새로운 패턴변환 기법에 의한 온라인 서명인식 기술)

  • Chi Suyoung;Lee Jaeyeon;Oh Weongeun;Kim Changhun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.663-673
    • /
    • 2005
  • An analysis model for the dynamics information of two-dimensional time-series patterns is described. In the proposed model, two novel transforms that visualize the dynamic characteristics are proposed. The first transform, referred to as speed equalization, reproduces a time-series pattern assuming a constant linear velocity to effectively model the temporal characteristics of the signing process. The second transform, referred to as velocity transform, maps the signal onto a horizontal vs. vertical velocity plane where the variation oi the velocities over time is represented as a visible shape. With the transforms, the dynamic characteristics in the original signing process are reflected in the shape of the transformed patterns. An analysis in the context of these shapes then naturally results in an effective analysis of the dynamic characteristics. The proposed transform technique is applied to an online signature verification problem for evaluation. Experimenting on a large signature database, the performance evaluated in EER(Equal Error Rate) was improved to 1.17$\%$ compared to 1.93$\%$ of the traditional signature verification algorithm in which no transformed patterns are utilized. In the case of skilled forgery experiments, the improvement was more outstanding; it was demonstrated that the parameter set extracted from the transformed patterns was more discriminative in rejecting forgeries

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo Hyun-Gee;Kim Dae-Sung;Yu Ki-Yun;Kim Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.111-121
    • /
    • 2006
  • The classification using spectral angle is a new approach based on the fact that the spectra of the same type of surface objects in RS data are approximately linearly scaled variations of one another due to atmospheric and topographic effects. There are many researches on the unsupervised classification using spectral angle recently. Nevertheless, there are only a few which consider the characteristics of Hyperspectral data. On this study, we propose the ISOMUSAC(Iterative Self-Organizing Modified Unsupervised Spectral Angle Classification) which can supplement the defects of previous unsupervised spectral angle classification. ISOMUSAC uses the Angle Division for the selection of seed points and calculates the center of clusters using spectral angle. In addition, ISOMUSAC perform the iterative merging and splitting clusters. As a result, the proposed algorithm can reduce the time of processing and generate better classification result than previous unsupervised classification algorithms by visual and quantitative analysis. For the comparison with previous unsupervised spectral angle classification by quantitative analysis, we propose Validity Index using spectral angle.

A Study on the Efficiency of Join Operation On Stream Data Using Sliding Windows (스트림 데이터에서 슬라이딩 윈도우를 사용한 조인 연산의 효율에 관한 연구)

  • Yang, Young-Hyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this thesis, the problem of computing approximate answers to continuous sliding-window joins over data streams when the available memory may be insufficient to keep the entire join state. One approximation scenario is to provide a maximum subset of the result, with the objective of losing as few result tuples as possible. An alternative scenario is to provide a random sample of the join result, e.g., if the output of the join is being aggregated. It is shown formally that neither approximation can be addressed effectively for a sliding-window join of arbitrary input streams. Previous work has addressed only the maximum-subset problem, and has implicitly used a frequency based model of stream arrival. There exists a sampling problem for this model. More importantly, it is shown that a broad class of applications for which an age-based model of stream arrival is more appropriate, and both approximation scenarios under this new model are addressed. Finally, for the case of multiple joins being executed with an overall memory constraint, an algorithm for memory allocation across the join that optimizes a combined measure of approximation in all scenarios considered is provided.

A simple approach to refraction statics with the Generalized Reciprocal Method and the Refraction Convolution Section (GRM과 RCS 방법을 이용한 굴절파 정적 시간차를 구하는 간단한 방법)

  • Palmer Derecke;Jones Leonie
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We derive refraction statics for seismic data recorded in a hard rock terrain, in which there are large and rapid variations in the depth of weathering. The statics corrections range from less than 10 ms to more than 70 ms, often over distances as short as 12 receiver intervals. This study is another demonstration of the importance in obtaining accurate initial refraction models of the weathering in hard rock terrains in which automatic residual statics may fail. We show that the statics values computed with a simple model of the weathering using the Generalized Reciprocal Method (GRM) and the Refraction Convolution Section (RCS) are comparable in accuracy to those computed with a more complex model of the weathering, using least-mean-squares inversion with the conjugate gradient algorithm (Taner et al., 1998). The differences in statics values between the GRM model and that of Taner et al. (1998) systematically vary from an average of 2ms to 4ms over a distance of 8.8 km. The differences between these two refraction models and the final statics model, which includes the automatic residual values, are generally less than 5 ms. The residuals for the GRM model are frequently less than those for the model of Taner et al. (1998). The RCS statics are picked approximately 10 ms later, but their relative accuracy is comparable to that of the GRM statics. The residual statics values show a general correlation with the refraction statics values, and they can be reduced in magnitude by using a lower average seismic velocity in the weathering. These results suggest that inaccurate average seismic velocities in the weathered layer may often be a source of short-wavelength statics, rather than any shortcomings with the inversion algorithms in determining averaged delay times from the traveltimes.

A Study on Smart Ground Resistance Measurement Technology Based on Aduino (아두이노 기반 IT융합 스마트 대지저항 측정 기술 연구)

  • Kim, Hong Yong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • Purpose: The purpose is to establish a safe facility environment from abnormal voltages such as lightning by developing a smart land resistance measuring device that can acquire real-time land resistance data using Arduino. Method: This paper studied design models and application cases by developing a land resistance acquisition and analysis system with Arduino and a power line communication (PLC) system. Some sites in the wind power generation complex in Gyeongsangnam-do were selected as test beds, and real-time land resistance data applied with new technologies were obtained. The electrode arrangement adopted a smart electrode arrangement using a combination of a Wenner four electrode arrangement and a Schlumberger electrode arrangement. Result: First, the characteristic of this technology is that the depth of smart multi-electrodes is organized differently to reduce the error range of the acquired data even in the stratigraphic structure with specificity between floors. Second, IT convergence technology was applied to enable real-time transmission and reception of information on land resistance data acquired from smart ground electrodes through the Internet of Things. Finally, it is possible to establish a regular management system and analyze big data accumulated in the server to check the trend of changes in various elements, and to model the optimal ground algorithm and ground system design for the IT convergence environment. Conclusion: This technology will reduce surge damage caused by lightning on urban infrastructure underlying the 4th industrial era and design an optimized ground system model to protect the safety and life of users. It is also expected to secure intellectual property rights of pure domestic technology to create jobs and revitalize our industry, which has been stagnant as a pandemic in the post-COVID-19 era.

Evaluation of International Quality Control Procedures for Detecting Outliers in Water Temperature Time-series at Ieodo Ocean Research Station (이어도 해양과학기지 수온 시계열 자료의 이상값 검출을 위한 국제 품질검사의 성능 평가)

  • Min, Yongchim;Jun, Hyunjung;Jeong, Jin-Yong;Park, Sung-Hwan;Lee, Jaeik;Jeong, Jeongmin;Min, Inki;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.229-243
    • /
    • 2021
  • Quality control (QC) to process observed time series has become more critical as the types and amount of observed data have increased along with the development of ocean observing sensors and communication technology. International ocean observing institutions have developed and operated automatic QC procedures for these observed time series. In this study, the performance of automated QC procedures proposed by U.S. IOOS (Integrated Ocean Observing System), NDBC (National Data Buy Center), and OOI (Ocean Observatory Initiative) were evaluated for observed time-series particularly from the Yellow and East China Seas by taking advantage of a confusion matrix. We focused on detecting additive outliers (AO) and temporary change outliers (TCO) based on ocean temperature observation from the Ieodo Ocean Research Station (I-ORS) in 2013. Our results present that the IOOS variability check procedure tends to classify normal data as AO or TCO. The NDBC variability check tracks outliers well but also tends to classify a lot of normal data as abnormal, particularly in the case of rapidly fluctuating time-series. The OOI procedure seems to detect the AO and TCO most effectively and the rate of classifying normal data as abnormal is also the lowest among the international checks. However, all three checks need additional scrutiny because they often fail to classify outliers when intermittent observations are performed or as a result of systematic errors, as well as tending to classify normal data as outliers in the case where there is abrupt change in the observed data due to a sensor being located within a sharp boundary between two water masses, which is a common feature in shallow water observations. Therefore, this study underlines the necessity of developing a new QC algorithm for time-series occurring in a shallow sea.