• 제목/요약/키워드: Nevada

검색결과 163건 처리시간 0.034초

Applications of Agent-Based Modeling (ABM) in Enhancing Facility Operation and Management

  • Khodabandelu, Ali;Park, JeeWoong
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.393-400
    • /
    • 2022
  • Agent-based modeling (ABM), as a relatively new simulation technique, has recently gained in popularity in the civil engineering domain due to its uniquely advantageous features. Among many civil engineering applications, ABM has been applied to facility operation and management, such as energy consumption management, as well as the enhancement of maintenance and repair processes. The former studies used ABM to manage energy consumption through simulating human energy-related behaviors and their interactions with facilities, as well as electrical, heating, and cooling systems and appliances, while the latter used ABM to enhance maintenance process through facilitating coordination, negotiation, and decision making between facility managers, service providers, and repair workers. The present study aims to provide a short qualitative review on the most recent applications of ABM in the above-mentioned areas. Based on the review and follow-up analysis, the study identifies the advantages, disadvantages, and limitations of ABM applications to facility operation and management, and offers several potential future research topics in the hope of filling the existing literature gaps.

  • PDF

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • 제9권2호
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략 (Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015)

  • 안동현;신주성;전용범;손기원;장기호;폴오;조백규
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.

The effects of cryopreservation on human dental pulp-derived mesenchymal stem cells

  • Tomlin, Allison;Sanders, Michael B;Kingsley, Karl
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권2호
    • /
    • pp.105-114
    • /
    • 2016
  • The purpose of this study is to evaluate the effects of cryopreservation on dental pulp-derived stem cells (DPSC) viability over a period of three years. Dental pulp-derived stem cells were isolated and cultured from thirty-one healthy teeth. DPSC isolates were assessed for doubling-time and baseline viability prior to cryopreservation and were assessed again at three time points; one week (T1), 18 months (T2), and 36 months (T3). DPSC can be grouped based on their observed doubling times; slow (sDT), intermediate (iDT), and rapid (rDT). Viability results demonstrated all three types of DPSC isolates (sDT, iDT and rDT) exhibit time-dependent reductions in viability following cryopreservation, with the greatest reduction observed among sDT-DPSCs and the smallest observed among the rDT-DPSC isolates. Cryopreserved DPSCs demonstrate time-dependent reductions in cellular viability. Although reductions in viability were smallest at the initial time point (T1) and greatest at the final time point (T3), these changes were markedly different among DPSC isolates with similar doubling times (DTs). Furthermore, the analysis of various DPSC biomarkers - including both intracellular and cell surface markers, revealed differential mRNA expression. More specifically, the relative high expression of Sox-2 was only found only among the rDT isolates, which was associated with the smallest reduction in viability over time. The expression of Oct4 and NANOG were also higher among rDT isolates, however, expression was comparatively lower among the sDT isolates that had the highest reduction in cellular viability over the course of this study. These data may suggest that some biomarkers, including Sox-2, Oct4 and NANOG may have some potential for use as biomarkers that may be associated with either higher or lower cellular viability over long-term storage applications although more research will be needed to confirm these findings.

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

Robotic lower pelvic port placement for optimal upper paraaortic lymph node dissection

  • Paek, Jiheum;Kang, Elizabeth;Lim, Peter C.
    • Journal of Gynecologic Oncology
    • /
    • 제29권6호
    • /
    • pp.87.1-87.4
    • /
    • 2018
  • Objective: Upper paraaortic lymph node dissection (UPALD) to the infrarenal level is one of the most challenging robotic procedures. Because robotic system has the limitation in robotic arm mobility. This surgical video introduces a novel robotic approach, lower pelvic port placement (LP3), to perform optimally and simultaneously both UPALD and pelvic procedures in gynecologic cancer patients using da Vinci Xi system. Methods: The patient presented with high-grade endometrial cancer. She underwent robotic surgical staging operation. For the setup of the LP3, a line was drown between both anterior superior iliac spines. At 3 cm below this line, another line was drown and four robotic ports were placed on this line. Results: After paraaortic lymph node dissection (PALD) was completed, the boom of robotic system was rotated $180^{\circ}$ to retarget for the pelvic lateral displacement. Robotic ports were placed and docked again. The operation was completed robotically without any complication. Conclusion: The LP3 was feasible for performing simultaneously optimal PALD as well as procedures in pelvic cavity in gynecologic cancer patients. The advantage of LP3 technique is the robotic port placement that affords for multi-quadrant surgery, abdominal and pelvic dissection. The LP3 is facilitated by utilizing advanced technology of Xi system, including the patient clearance function, the rotating boom, and 'port hopping' that allows using every ports for a camera. The LP3 will enable surgeons to extend the surgical indication of robotic surgical system in the gynecologic oncologic field.