• 제목/요약/키워드: Neutron transport

검색결과 184건 처리시간 0.021초

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • 한국환경과학회지
    • /
    • 제13권2호
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

NUCLEAR DATA UNCERTAINTY AND SENSITIVITY ANALYSIS WITH XSUSA FOR FUEL ASSEMBLY DEPLETION CALCULATIONS

  • Zwermann, W.;Aures, A.;Gallner, L.;Hannstein, V.;Krzykacz-Hausmann, B.;Velkov, K.;Martinez, J.S.
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.343-352
    • /
    • 2014
  • Uncertainty and sensitivity analyses with respect to nuclear data are performed with depletion calculations for BWR and PWR fuel assemblies specified in the framework of the UAM-LWR Benchmark Phase II. For this, the GRS sampling based tool XSUSA is employed together with the TRITON depletion sequences from the SCALE 6.1 code system. Uncertainties for multiplication factors and nuclide inventories are determined, as well as the main contributors to these result uncertainties by calculating importance indicators. The corresponding neutron transport calculations are performed with the deterministic discrete-ordinates code NEWT. In addition, the Monte Carlo code KENO in multi-group mode is used to demonstrate a method with which the number of neutron histories per calculation run can be substantially reduced as compared to that in a calculation for the nominal case without uncertainties, while uncertainties and sensitivities are obtained with almost the same accuracy.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

Implementation and benchmarking of the local weight window generation function for OpenMC

  • Hu, Yuan;Yan, Sha;Qiu, Yuefeng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3803-3810
    • /
    • 2022
  • OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.

Criticality analysis of pyrochemical reprocessing apparatuses for mixed uranium-plutonium nitride spent nuclear fuel using the MCU-FR and MCNP program codes

  • P.A. Kizub ;A.I. Blokhin ;P.A. Blokhin ;E.F. Mitenkova;N.A. Mosunova ;V.A. Kovrov ;A.V. Shishkin ;Yu.P. Zaikov ;O.R. Rakhmanova
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1097-1104
    • /
    • 2023
  • A preliminary criticality analysis for novel pyrochemical apparatuses for the reprocessing of mixed uranium-plutonium nitride spent nuclear fuel from the BREST-OD-300 reactor was performed. High-temperature processing apparatuses, "metallization" electrolyzer, refinery remelting apparatus, refining electrolyzer, and "soft" chlorination apparatus are considered in this work. Computational models of apparatuses for two neutron radiation transport codes (MCU-FR and MCNP) were developed and calculations for criticality were completed using the Monte Carlo method. The criticality analysis was performed for different loads of fissile material into the apparatuses including overloading conditions. Various emergency situations were considered, in particular, those associated with water ingress into the chamber of the refinery remelting apparatus. It was revealed that for all the considered computational models nuclear safety rules are satisfied.

측정 데이터 기반 중수로 압력관 직경평가 방법론 개발 (Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data)

  • 정종엽
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

VINUS: A neutron transport solver based on the variational nodal method for reactor core analysis

  • Zhulun Li;Xubo Ma;Longxiao Ma;Teng Zhang;Zhirui Du
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4195-4206
    • /
    • 2024
  • Compared to traditional transverse integration methods, the variational nodal method, with its unique advantages, is more suitable for high-fidelity calculations of reactor physics in reactors with complex geometries and finer detail descriptions. In this study, the basic theory of the variational nodal method was derived and the VINUS code is developed. The neutron solver based on this method is adaptable to various geometric models, and showcased the code's fundamental framework. On this basis, a set of self-designed macroscopic cross-section benchmarks, actual macroscopic cross-section benchmark VVER-440, and few-group microscopic cross-section benchmark RBEC-M for fast spectrum reactors were used to verify different functionalities of VINUS. The results were shown that VINUS code maintains good computational accuracy and convergence trends. For the VVER-440 benchmarks, the deviation of keff of VINUS from reference is less than 100 pcm, and the maximum power deviation is less than 4 %. For the RBEC-M, the deviation of keff is 125 pcm, and the maximum power deviation is less than 5 %. These outcomes collectively demonstrate the solver's potential for engineering applications in future advanced reactor designs.

Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment

  • Osborn, Jeremy M.;Glennon, Kevin J.;Kitcher, Evans D.;Burns, Jonathan D.;Folden, Charles M.III;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.820-828
    • /
    • 2018
  • The growing nuclear threat has amplified the need for developing diverse and accurate nuclear forensics analysis techniques to strengthen nuclear security measures. The work presented here is part of a research effort focused on developing a methodology for reactor-type discrimination of weapons-grade plutonium. To verify the developed methodology, natural $UO_2$ fuel samples were irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) and produced approximately $20{\mu}g$ of weapons-grade plutonium test material. Radiation transport simulations of common thermal reactor types that can produce weapons-grade plutonium were performed, and the results are presented here. These simulations were needed to verify whether the plutonium produced in the natural $UO_2$ fuel samples during the experimental irradiation at MURR was a suitable representative to plutonium produced in common thermal reactor types. Also presented are comparisons of fission product and plutonium concentrations obtained from computational simulations of the experimental irradiation at MURR to the nondestructive and destructive measurements of the irradiated natural $UO_2$ fuel samples. Gamma spectroscopy measurements of radioactive fission products were mostly within 10%, mass spectroscopy measurements of the total plutonium mass were within 4%, and mass spectroscopy measurements of stable fission products were mostly within 5%.

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

TRIGA Mark-III 원자로의 노심특성계산 (Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.264-276
    • /
    • 1981
  • TRIGA Mark-III 원자로의 핵특성을 실제운전상태와 유사하게 모사할 수 있는 해석절차를 개발하였다. 계산에 사용한 전산코드는 다군중성자확산 연소계산코드인 CITATION이고 채택한 중성자에너지군의 수는 TRIGA형 원자로에서 일반적으로 사용하는 7군(고속영역 3, 열영역 4)이다. 직접적인 3차원 계산이 현실적으로 불가능하므로 평면 2차원계산과 원통형 2차원 계산으로 3차원 효과를 기하였다. 연구로와 같이 노심이 작은 원자로에 대하여는 중성자평형에서 buckling에 의한 효과가 매우 크기 때문에 이를 정확하게 나타내는 방법의 개발에 중점을 두었다. 본 연구에서는 에너지군 또는 영역에 무관한 buckling을 중성자 수송이론으로 산출하는 전형적인 방법을 사용하지 않고 중성자 확산이론으로서 에너지군별, 영역별 buckling을 산출하였으며, 이를 이용하여 수행한 노심계산의 결과는 만족스러웠다. 계산시 노심은 원자로수조의 중앙부에 있는 것으로 하고 제어봉은 완전히 인출되었으며 동위원생산용 조사시료는 없는 것으로 가정하였다. 계산결과로서 연소에 따른 초과반응도가의 변화, 운전이력에 따른 Xe-135 독작용의 변화, 회전조사시료대의 반응도가를 산출하고 이를 실제 운전자료와 비교하였다. 또한 중성자속 및 출력분포, 노심 각 조사시설에서의 중성자 스펙트럼등에 대한 계산결과도 제시하였다.

  • PDF